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ABSTRACT 

Incorporating secondary correlated traits collected from high-throughput 
phenotyping in genomic selection (GS) models for complex traits has been 
demonstrated to improve accuracy. The prediction ability of different 
single and multiple trait partial least square (PLS) regression models for 
grain yield were assessed for winter wheat lines evaluated in US Pacific 
Northwest environments. Different populations including a diversity 
panel, F5, and double haploid breeding lines were evaluated in Lind and 
Pullman, WA between 2015 and 2018 and were genotyped with genotyping 
by sequencing-derived SNP markers. Prediction ability was assessed 
under cross-validations and independent predictions. Multi-trait covariate 
models were advantageous in obtaining optimal predictions for yield, 
especially when there is less genetic relatedness between the training and 
test populations. Adding multiple traits in the model improved predictions 
for environments with low heritability. Cross-validations resulted in the 
highest prediction ability (0.16) whereas independent predictions using 
the diversity panel to predict F5 and double haploid winter wheat 
breeding lines obtained the lowest (0.002). Relatedness between 
populations, heritability of the secondary traits, and the type of PLS model 
used were among the principal factors affecting prediction ability. Our 
results showed the relevance of using multi-trait GS models to achieve 
increased predictions. Genetic architecture of the target trait and genetic 
relatedness between populations should be taken into consideration when 
choosing which type of models to implement in the breeding program. An 
increased prediction ability for the multi-trait models indicates the 
potential to attain improved genetic gains for yield in wheat breeding 
programs through these GS approaches.  

KEYWORDS: genetic gain; genomic selection; grain yield; high-throughput 
phenotyping; partial least square regression; soft winter wheat 

INTRODUCTION 

The wealth of genomic information available for important crops has 
enabled the use of marker data for molecular breeding and DNA-based 
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selection for plant improvement. In recent years, genomic approaches 
such as genome-wide association studies (GWAS) have been used to 
understand the genetic basis of important traits such as grain yield, 
disease resistance, and adaptation traits in wheat [1–4]. However, 
association mapping could not identify small effect loci and with such, the 
power of GWAS for the dissection of complex traits is limited [5,6]. In 
addition, the structure of breeding populations used in association 
mapping could cause the detection of spurious associations in genetic 
mapping [7]. On that regard, a complementary method, genomic selection 
(GS) has been explored in many crops and its potential to improve genetic 
gains though selection has been demonstrated [8–11].  

In GS, a population with genotypic and phenotypic information is first 
used to train a prediction model (through a training population), and then 
used to predict the performance of lines in a validation set that have no 
phenotypic information [12]. The need to identify significant QTL-marker 
associations is removed, and instead GS considers numerous predictors 
simultaneously [13]. A measure of a model’s ability to perform trait 
predictions is its prediction ability, which could be defined as the 
correlation between observed phenotype with predicted values [14]. 
Through GS, genomic estimated breeding values (GEBV) can also be 
calculated and these values can be used for performing selections and 
choosing which parents to cross. Depending on the trait, a high or low 
estimated breeding value would indicate that a line is predicted to perform 
better in succeeding field trials. GS can increase genetic gains by reducing 
the number of cycles and progenies that need to be phenotyped and by 
improving the intensity of selection [15,16].  

In addition to whole genome-wide marker data available for plant 
breeders, emerging tools for high-throughput phenotyping (HTP) have 
been widely utilized to collect phenotypic information in the field [17,18]. 
Its rapid development in the past few years resulted in increased amounts 
of phenotypic information available that could lead to better understanding 
of the complexity of traits such as grain yield [19,20]. Accurate 
phenotyping remains crucial for the efficient building of prediction 
models for GS [15]. Phenotyping platforms are typically equipped with 
different sensors such as red, green, and blue (RGB) cameras, multiple 
spectral cameras, and LiDAR, among others [21]. Ground-based HTP 
platforms with cameras that collect reflectance data from plant canopies 
have been used to assess various traits in different crops such as wheat 
[22–24], cotton [25], and rice [26]. Vegetation indices such as Normalized 
Difference Vegetation Index (NDVI), Normalized Water Index (NWI), and 
Simple Ratio (SR) derived from the absorbance of plant tissues at specific 
wavelengths of light are associated with important traits such as grain 
yield, biomass, plant water status, and degree of senescence [27–29]. HTP 
traits provide additional information on the genetic predictor variables in 
GS models and thus can be used to improve accuracies for complex traits 
such as grain yield [15]. Previously, incorporating these traits in genomic 
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prediction models for grain yield resulted to improved predictions in 
wheat [30–32]. Combining information from HTP and genome-wide 
marker profile to identify lines with high genetic potential remain 
relevant for the improvement of grain yield especially in major wheat 
producing regions such as the Pacific Northwest area of the US.  

Partial least square (PLS) regression takes advantage of correlated 
predictor variables X and response variables Y [33]. It relates both X and Y 
through a linear multivariate model and a dimension reduction approach 
which fits collinear genetic and environmental factors simultaneously by 
finding latent variables that explain the variance of the predictor variables 
as well as the covariance between predictor and response factors [34]. It is 
useful for predicting dependent variables from large number of predictors 
that might be highly correlated [35]. Moreover, PLS are computationally 
fast, statistically efficient, and can be used to address regression problems, 
predictions, classification, and survival analysis [36]. In Holstein bulls, PLS 
models were observed to be more accurate than pedigree based BLUP 
approaches in predicting traits with varying heritability [35]. Similarly, the 
robustness and superiority of these models over pedigree-based approaches 
for predicting milk yield, fat content, and somatic cell scores in dairy sheep 
has also been demonstrated [37]. PLS models have been used to predict 
grain yield [32]; yield, yield components and physiological traits [38]; and 
Septoria tritici blotch disease in wheat [39], among others. The feasibility 
of using these models for predicting yield in the presence of secondary 
traits in the model for Pacific Northwest winter wheat, nonetheless, has 
not been reported.  

The objectives of this study were to compare single and multiple trait 
GS models for grain yield in US Pacific Northwest (PNW) winter wheat 
under different cross-validation and independent prediction scenarios, 
and to identify the prediction model resulting to optimal accuracies for 
yield. We evaluated the potential of using least square (PLS) regression 
models to predict grain yield for wheat in PNW growing conditions 
through using secondary traits collected from HTP field phenotyping.  

MATERIALS AND METHODS 

Winter Wheat Populations 

The current study used five different populations of soft winter wheat 
adapted to the Pacific Northwest region of the US, including a diverse 
association mapping panel (DAP), F5, and double haploid (DH) populations 
described previously [40]. Briefly, DAP consisted of 456 lines evaluated in 
the Washington State University Dryland Research Station in Lind (LND) 
and in the Spillman Agronomy Farm near Pullman (PUL), WA during 
2015–2018, whereas the F5 and DH populations were planted in LND and 
PUL in 2017 (F5_LND17 and F5_PUL17) and 2018 (DH_LND18 and 
DH_PUL18) growing seasons, respectively. F5_LND17 consisted of 61 
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whereas F5_PUL17 consisted of 501 lines. DH_LND18 and DH_PUL18 
consisted of 449 and 761 winter wheat lines, respectively.  

The winter wheat populations were planted in an augmented  
design [41] with repeated checks and genotypes (un-replicated) in each 
block. Plot length was 1.5 meter, each entry covered a 1 m2 area, planted 
at ~100 plants per m2. Checks used were “Eltan” [42] and “Madsen” [43] in 
LND; and Madsen was used in PUL for 2015−2018 seasons for the DAP. 
Lines “Bruehl” [44], Eltan, “Otto” [45], “Jasper” [46], Madsen, and “Xerpha” 
[47] were used as checks for F5_LND17; and “Brundage” [48], Jasper, 
Madsen, “Puma” [49], “UI Bruneau”, and “Xerpha” were used for the 
F5_PUL17 population. Checks used for the DH_LND18 lines included 
Jasper, Otto, and Xerpha; whereas Jasper, Madsen, Puma, and Xerpha were 
used as checks for the DH_PUL18 panel. The DAP was not evaluated for SRI 
and grain yield in LND in 2016 as substantial soil crusting caused delayed 
emergence for the winter wheat lines.  

Collection and Analysis of Phenotypic Data 

Grain yield (in t·ha−1) was collected by harvesting whole plots using a 
Wintersteiger® Nursery combine (Ried im Innkreis, Austria). Spectral 
reflectance was collected using a CROPSCAN® multiple spectral 
radiometer (Rochester, MN, USA) attached to a pole and placed 
approximately 1 m above the canopy and in the middle of each plot. Filters 
measuring radiation at 16 different wavelengths of light (between 430 and 
970 nm) were installed in the CROPSCAN. Data for spectral reflectance 
were taken approximately 10–15 days apart across three different growth 
stages- heading, early grain-fill and late grain-fill within a two-hour solar 
window (between 10:00 am and 2:00 pm) at clear and windless days. 
Spectral information for the plots were processed through the CROPSCAN 
MSR® software. Spectral reflectance indices, namely Normalized 
Difference Vegetative Index (NDVI), Normalized Water Index-1 (NWI-1), 
and Simple Ratio (SR) were calculated as shown in Table 1. 

Table 1. Spectral reflectance indices measured for US Pacific Northwest soft winter wheat lines. 

Index Formula Related traits Reference(s) 

Normalized Difference 
Vegetative Index (NDVI) 

(R800 − R680)/ 
(R800 + R680) 

Biomass, vegetative greenness, 
degree of senescence 

[50] 

Normalized Water Index-1 
(NWI-1) 

(R970 − R900)/ 
(R970 + R900) 

Water status, root access to 
moisture 

[27,51] 

Simple Ratio (SR) R900/R680 Biomass, vegetative greenness, 
degree of senescence 

[52] 

Adjusted means were calculated for an augmented design using the 
augmented complete block design (ACBD) in R program developed by 
Rodríguez et al. [53] for individual locations and combined across 
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environments. Best linear unbiased estimates (BLUEs) and predictors 
(BLUPs) were calculated for individual locations and for combined 
analyses across environments, respectively. The models used for 
calculations were (a) Yij = µ + Blocki + IDCheck + Gen + Check + εij and  
(b) Yijkl = µ + IDCheck + Gen + Check + Loci + Loci × IDCheck + Loci × Gen + 
Loci × Check + Blockk(Loci) + εijkl, for individual environment, BLUE (a) and 
combined analyses across locations, BLUP (b), where Y is the trait of 
interest; µ is the effect of the mean; Blocki is the effect of the ith block; Gen 
corresponds to the un-replicated genotypes; Check is the effect of the 
replicated checks on each block; Loci is the effect of the ith location; 
IDCheck is the identifier of the checks; and ε is the standard normal  
errors [40]. Effects were considered fixed and random when calculating 
BLUEs for individual locations and BLUPs for combined analyses across 
environments, respectively.  

Heritability and Genetic Correlations 

Genetic correlation (rG) was calculated according to Falconer [54] using 
the following formula: rG = (Covxy)/�Varx × Vary ; where Covxy is the 
covariance between yield and SRI calculated using a multivariate 
approach in JMP v. 8.1 [55]; and Varx and Vary are the variances for grain 
yield and SRI, respectively, across all locations for each population (DAP, 
DH, and F5 lines). Broad-sense heritability for grain yield in individual 

environments was calculated as 𝐻𝐻2 =  𝜎𝜎𝑔𝑔2

𝜎𝜎𝑔𝑔 
2 + 𝜎𝜎𝑒𝑒 

2 , where 𝜎𝜎𝑔𝑔 
2  and 𝜎𝜎𝑒𝑒 

2  are the 

genotype and error variance components, respectively; whereas H2 across 

locations (combined analyses) was calculated as 𝐻𝐻2 =  𝜎𝜎𝑔𝑔2

𝜎𝜎𝑔𝑔 
2 +  𝜎𝜎𝑔𝑔𝑒𝑒

𝑛𝑛

2  + 𝜎𝜎𝑒𝑒/𝑛𝑛𝑛𝑛 
2 , where 

𝜎𝜎𝑔𝑔 
2  is the genotype variance; 𝜎𝜎𝑔𝑔𝑒𝑒 

2 is the variance due to genotype by 
environment interaction; n is the number of environments; r is the 
number of replication per environment (i.e., equal to 1 for an augmented 
design); and 𝜎𝜎𝑒𝑒 

2 is the error variance using the augmented complete block 
design (ACBD) in R program [53].  

SNP Genotyping and Genomic Selection 

Genotyping was conducted using genotyping-by-sequencing [11] using 
the restriction enzymes MspI and PstI through the NC State Genomics 
Sciences Laboratory in Raleigh, NC, USA. After filtering for minor allele 
frequency MAF > 0.05 and quality control, 11,089 SNP markers, with 10,894 
of these SNPs (98.2%) having known chromosome positions, were used for 
analyses. Imputation of missing data was done using the LDknni (linkage 
disequilibrium k-nearest neighbor joining imputation) function in TASSEL 
v. 5.0 [56]. Genetic relatedness between the training and validation 
populations was evaluated using Rogers genetic distance [57] through the 
“Population Measures” function in JMP v.8.1. 

Genomic predictions were conducted using partial least square (PLS) 
regression with spectral reflectance data incorporated in the model 
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following the methods of Crain et al. [32]. Prediction scenarios included 
cross-validations (CV) using a diversity association mapping panel (DAP); 
and two independent prediction (IP) schemes. In the CV, 80% of the lines 
was used to train a model to predict the remaining 20% under a five-fold 
validation. In the IP1 scenario, the DAP was used to predict grain yield of 
Washington State University F5 and DH winter wheat breeding lines; 
whereas in the second independent validation (IP2), predictions were 
conducted within the breeding lines. The BLUE and BLUP datasets for 
grain yield used for GS analyses are shown in Table 2. Mean spectral 
reflectance values across the three developmental stages were used as 
fixed effects in the PLS prediction models for yield.  

Table 2. Genotypic variance and broad-sense heritability for grain yield across different populations and 
datasets of US Pacific Northwest soft winter wheat. 

Population No. of lines Dataset 
Mean yield  
(t·ha−1) 

Genotypic 
variance 

Heritability b 

DAP a 458 LND15 2.50 0.18 0.70 
  LND17 3.12 0.27 0.59 
  LND18 4.86 0.29 0.43 
  LND_Com 3.50 0.08 0.39 
  PUL15 6.97 0.27 0.32 
  PUL16 5.84 0.38 0.55 
  PUL17 7.77 0.09 0.23 
  PUL18 10.15 0.38 0.59 
  PUL_Com 7.65 0.15 0.50 
F5 61 LND17 3.34 0.08 0.15 
 501 PUL17 7.66 0.12 0.13 
DH 449 LND18 4.43 1.01 0.56 
 761 PUL18 8.57 1.41 0.53 

a Diversity association mapping panel, b Broad-sense heritability; calculated as 𝐻𝐻2 =  𝜎𝜎𝑔𝑔2

𝜎𝜎𝑔𝑔 
2 + 𝜎𝜎𝑒𝑒 

2  
 (for individual locations); 

and 𝐻𝐻2 =  𝜎𝜎𝑔𝑔2

𝜎𝜎𝑔𝑔 
2 +  𝜎𝜎𝑔𝑔𝑒𝑒

𝑛𝑛

2  + 𝜎𝜎𝑒𝑒/𝑒𝑒𝑛𝑛 
2  (for combined analyses). 

The first PLS regression model used was a univariate model with the 
spectral reflectance measurements included as covariate predictor traits 
(Cov). The second model was a multivariate (MV) approach predicting 
yield together with the spectral reflectance traits. The basic form of the 
Cov model was: Grain yield = µ + Xβ + Zu + ε; where X is the matrix of 
individual observations (i.e., individual wheat lines); β is the fixed effects 
of spectral traits; Z is an (n × m) matrix assigning markers to genotypes; u 
is a (1 × n) array of random effects for the markers; and ε is the error [32]. 
Cov model, therefore, is a univariate model that includes predictor traits 
(in the form of spectral measurements) as covariates.  
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The MV model used was in the form: 

�
𝒕𝒕1
⋮
𝒕𝒕𝑛𝑛
�  = �

𝑿𝑿 0
⋮ ⋮
0 𝑿𝑿𝑿𝑿   

�    �
µ𝟏𝟏
⋮

µ𝑿𝑿
� + �

𝒁𝒁 0
⋮ ⋮
0 𝒁𝒁n  

�    �
µ1
⋮

µ𝑛𝑛
� + �

𝜀𝜀1
⋮
𝜀𝜀𝑛𝑛
� (1) 

where n is the number of traits, t1 is a vector of trait values for grain yield; 
X is the matrix for fixed effects which simplifies to a vector of 1 for each 
trait representing the mean as only the markers were used in this model; 
Z is the random marker matrix for each trait; and ε1…n is the error term 
[32]. This model follows a scenario where grain yield is masked in the 
prediction model for the validation set, and therefore represents a 
breeding program where only spectral traits have been collected and the 
plants were not yet harvested, and hence lines are chosen primarily based 
on predicted values for grain yield [32]. Prediction ability was represented 
as the Pearson correlation coefficient between the predicted and actual 
grain yield values obtained by fitting HTP traits in the prediction model. 
Single trait prediction models included only a single spectral reflectance 
index, whereas multi-trait models included at least two spectral 
measurements for GS. All analyses were implemented under the partial 
least square (“pls”) package [58] in R. Additive and non-additive genetic 
variances for grain yield for each of the dataset were estimated using the 
“sommer” package through the “mmer” function [59] in R, using 
phenotypic and SNP marker data. The proportion of additive to the total 
genetic variance (i.e., additive + non-additive) was calculated by dividing 
the additive variance by the total genetic variance.  

RESULTS 

Heritability, Phenotypic, and Genetic Correlations  

Broad-sense heritability for grain yield was low to moderate, ranging 
between 0.13 (F5_PUL17) and 0.70 (DAP_LND15). Yield had higher 
heritability in the DH lines (0.53 and 0.56 for DH_PUL18 and DH_LND18, 
respectively) compared with the F5 lines (0.13 (F5_PUL17) and 0.15 
(F5_LND17)). In general, for the DAP, significant phenotypic correlations 
with grain yield were observed for the spectral traits (Table 3). Non-
significant phenotypic correlations, nonetheless, were observed between 
SR and yield for DAP_LND18 and all the PUL datasets. Likewise, non-
significant phenotypic correlations were observed for NDVI in PUL16 and 
PUL_Com, and PUL16, PUL18, and PUL_Com datasets for NWI-1. Significant 
phenotypic correlation between spectral traits and grain yield were 
observed for all the F5 and DH winter wheat breeding lines. Overall, 
higher H2 values were observed for the HTP traits. Heritability for the 
spectral traits ranged between 0.52 (NWI-1, DAP_LND18 and SR, 
F5_PUL17) and 0.95 (SR, DAP_LND17) dataset (Table 4). Genetic 
correlations using all locations for the different wheat populations ranged 
between −0.72 (NWI-1; DAP and F5 lines) and 0.78 (NDVI and SR, DAP) 
(Table 5). Genetic correlations between environments were low to 
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moderate, ranging between −0.14 and 0.69 (DAP); −0.18 and 0.21 (DAP and 
the F5 and DH wheat breeding lines); and −0.13 and 0.30 (within the 
breeding lines) (Supplementary Tables S1–S3, respectively).  

Table 3. Phenotypic correlation of spectral reflectance traits with grain yield across different US Pacific 
Northwest soft winter wheat populations. 

Population Dataset NDVI a NWI-1 b SR c 
DAP d  LND15 0.27 *** −0.23 *** 0.19 *** 
 LND17 0.58 *** −0.59 *** 0.58 *** 
 LND18 0.13 * −0.11 * 0.09 
 LND_Com 0.44 *** −0.42 *** 0.38 *** 
 PUL15 0.11 * −0.11 * 0.08 
 PUL16 −0.06 0.02 −0.07 
 PUL17 −0.09 * 0.10 * −0.08 
 PUL18 −0.11 * 0.06 −0.06 
 PUL_Com 0.04 −0.07 0.04 
F5 LND17 0.77 *** −0.77 *** 0.70 *** 
 PUL17 0.43 *** −0.46 *** 0.42 *** 
DH LND18 0.70 *** −0.70 *** 0.64 *** 
 PUL18 0.74 *** −0.71 *** 0.65 *** 

a NDVI, Normalized Difference Vegetation Index; b NWI-1, Normalized Water Index-1; c SR, Simple Ratio; d Diversity 

association mapping panel; ***, significant at P < 0.0001; **, significant at P < 0.001; *, significant at P < 0.05. 

Table 4. Heritability of spectral reflectance traits across different US Pacific Northwest soft winter wheat 
populations. 

Population Dataset NDVI a NWI-1 b SR c 
DAP d LND17 0.91 0.53 0.95 
 LND18 0.77 0.52 0.81 
 PUL17 0.78 0.68 0.68 
 PUL18 0.77 0.66 0.86 
F5 LND17 0.72 0.72 0.63 
 PUL17 0.67 0.63 0.52 
DH LND18 0.77 0.77 0.84 
 PUL18 0.90 0.90 0.88 

a NDVI, Normalized Difference Vegetation Index; b NWI-1, Normalized Water Index-1; c SR, Simple Ratio; d Diversity 

association mapping panel. 

Principal Component Analysis and Genetic Distances within the 
Breeding Lines 

Analysis of principal components using genome-wide marker data 
revealed a 5.2% variation caused by the first PC (PC1) and 4.5% by PC2 
within the F5 breeding lines, with no distinct clustering observed  
(Figure 1A). PC1 and PC2 caused 16.2 and 4.2% of variation, respectively 
within the DH lines (Figure 1B) with more differentiation observed 
compared with the F5, where the DH_LND lines formed a separate cluster 
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with that of the DH_PUL lines. When combined on a single PCA biplot, the 
F5 lines formed a separate group from that of the DH lines, where the first 
PC caused 21.2% and the second PC caused 10.5% of variation. The DH 
entries formed separate clusters, indicating a higher genetic 
differentiation among them (Figure 1C). Genetic (Rogers) distances among 
the breeding lines were 0.05 (F5), 0.13 (DH) and 0.40 (F5 and DH). 

Table 5. Variances and genetic correlation of the spectral reflectance traits with grain yield across locations 
for the winter wheat diversity panel and breeding lines. 

Population σ2
GY 

σ2 Genetic correlation 
NDVI a NWI-1 b SR c NDVI NWI-1 SR 

DAP d 8.01 0.033 0.00074 68.529 0.78 −0.72 0.78 
F5 lines 3.05 0.009 0.0003 11.647 0.70 −0.72 0.68 
DH lines 7.02 0.007 0.0002 7.017 0.54 −0.58 0.55 

a NDVI, Normalized Difference Vegetation Index; b NWI-1, Normalized Water Index-1; c SR, Simple Ratio; d Diversity 

association mapping panel; All genetic correlations were significant at P < 0.0001. 

 

Figure 1. PCA biplots for winter wheat breeding lines used for predicting grain yield using partial least 
square regression models. (A) F5 breeding lines; (B) DH lines; (C) F5 + DH breeding lines. 
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Figure 2. Boxplots of prediction ability for grain yield under different genomic selection scenarios using 
covariate (Cov) and multivariate (MV) partial least square regression models incorporating spectral 
reflectance traits. (A) cross validations using a diversity association mapping panel (DAP); (B) independent 
predictions using DAP to predict F5 and DH winter wheat breeding lines; and (C) independent predictions 
within the breeding lines. Actual values for prediction ability are reported in Supplementary Table S5. NDVI, 
Normalized Difference Vegetative Index; NWI-1, Normalized Water Index-1; SR, Simple Ratio. 

Prediction Ability for Grain Yield 

Boxplots showing prediction ability for the different GS schemes are 
shown in Figure 2A,C. Overall, prediction ability for yield ranged between 
−0.45 and 0.66. Prediction ability under a CV scenario using the DAP 
ranged between 0.02 and 0.27 (mean of 0.16) for single and multiple trait 
models. Using DAP to predict F5 and DH breeding lines (IP1) resulted to an 
average prediction ability of 0.06 and 0.07, respectively. Predictions within 
the breeding lines under independent validations (IP2) resulted to a mean 
prediction ability of 0.13, where predicting within the same population 
resulted in a 36% increase in average prediction ability compared with 
using the F5 to predict the DH lines (and vice versa). Prediction ability 
using covariate models was significantly higher (P < 0.05) than the 
predictions for multivariate models under single and multiple traits and 
across all prediction scenarios (Figure 3). Similarly, significant (P < 0.05) 
differences were observed for the mean prediction ability using multiple 
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traits compared with using only a single trait in the model (0.15 vs 0.09) 
across all GS scenarios. Predicting within similar environments resulted 
in a 13% advantage compared to across environment predictions. Overall, 
a positive correlation (r = 0.35) between the proportion of additive 
variance to the total genetic variance and mean prediction ability across 
datasets was observed (Supplementary Table S4).  

 

Figure 3. Mean prediction ability across all genomic selection scenarios for grain yield using partial least 
square covariate (Cov) and multivariate (MV) regression models in the presence of single (ST) and multiple 
(MT) traits collected from high-throughput phenotyping. Prediction scenarios included cross-validations 
and independent predictions. Means followed by the same letter are not significantly different, LSD < 0.05. 

DISCUSSION 

The current study reports the prediction ability of single and multiple 
trait GS models for grain yield incorporating spectral reflectance 
measurements derived from high-throughput field phenotyping. Different 
prediction scenarios for empirical datasets in a winter wheat breeding 
program were evaluated for the prediction ability of grain yield. 
Prediction ability of covariate and multivariate PLS regression models for 
yield were compared across different datasets and prediction scenarios in 
winter wheat grown in the PNW region of the US. 

Prediction Ability for Single and Multiple Trait Genomic Selection 
Models 

Previous studies have shown the relevance of using secondary traits to 
predict a focal trait, which is often difficult to phenotype or measure (e.g., 
grain yield). In US Holsteins, GS accuracy improved when switching from 
single- to multi-trait models across different traits [60]. Similarly, in 
African cassava, multi-trait and multi-environment mixed models were 
recommended for selection, as using these models resulted in a 40% 
improvement in prediction ability of target agronomic traits [61]. The 
advantage of multi-trait models over the single trait relies mainly on the 
use of genetically correlated traits for predictions [62]. Thus, genetic 
correlation between the primary and the predictor traits is crucial to 
achieve optimal GS accuracies in the breeding program. In the present 
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work, the genetic correlations between the measured SRI across locations 
and grain yield were high, indicating their potential to be used as 
secondary traits to achieve increased prediction ability for yield in US 
PNW winter wheat.  

Multi-trait prediction models showed a 40% advantage over the  
single-trait model across GS scenarios in the current study. Increasing the 
number of traits in the model was relevant in increasing prediction ability, 
where using all three traits resulted to the highest mean and was 
significantly different (P < 0.05) with the predictions using a single-trait 
model. In some scenarios, however, having three indices in the model did 
not necessarily result to higher predictions compared to the two-trait 
models. It was previously observed that including more traits did not show 
advantage in predicting yield and protein content in rye, as additional 
traits could introduce issues in co-linearity [63]. Furthermore, it was noted 
that if the aim of a breeding program is to improve the prediction ability, 
particularly for a scarcely phenotyped trait, using a two-trait instead of a 
three-trait model could offer a greater advantage [63]. In this context, it 
would thus be beneficial to identify only a few of the highly heritable, 
strongly correlated predictor traits and use these routinely for indirect 
selection and prediction of the target or primary trait. In our case, using 
NDVI and SR in combination under a covariate model as fixed effect 
predictor traits showed the highest average prediction ability across all 
scenarios (0.15), and therefore could be used to improve predictions for 
grain yield in US PNW winter wheat.  

Other studies observed that using multiple traits in the prediction 
model did not result in improved predictions [64,65] demonstrating that 
in some cases, multi-trait models are not advantageous compared to single 
trait approaches. Overall, although we observed generally low values for 
the prediction ability of grain yield in the current study, integrating GS 
strategies in the breeding program should still be considered. In the long 
run, the gains achieved using these approaches through increased 
selection intensity and faster breeding cycles should give additional 
advantage over the traditional marker or phenotypic selection [15,16]. 
Furthermore, prediction ability could be improved by optimizing different 
factors that affect GS accuracy such as the genetic architecture of the trait, 
heritability, number of markers, genetic and phenotypic correlations 
among the traits, and the percentage of missing data, either alone or in 
combination [66–68]. Ultimately, the success of genomic predictions in 
breeding programs does not all depend on the calculated prediction ability 
[69] but on how breeders will use this information in performing guided 
decisions on which lines to advance or used as parents. There were no 
significant differences between predictions when single and multiple 
traits were used in CV and IP1 scenarios. Nevertheless, when predictions 
were conducted within the breeding lines (IP2), where genetic relatedness 
is more apparent than in IP1, using multiple traits resulted in a significant 
(P < 0.05) increase in prediction ability for grain yield, where a 67% 
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advantage over using only a single trait in the GS model was observed. 
When there is less relatedness between the training and test populations, 
the use of multi-trait models should be preferred over single trait 
approaches [70].  

Prediction Ability across Different GS Scenarios 

Cross-validations (CV) represent a common prediction scenario where 
a single population is divided into a training and a testing set, whereas in 
independent predictions, a model is trained in one population and is later 
used to predict another comprising of untested genotypes in untested 
environments [71]. Overall, using CV resulted to the highest average 
predictions (0.16) followed by IP2 (0.13) and IP1 (0.01), similar with 
previous results comparing accuracy for CV and independent validations 
in DH wheat [72]. The increased prediction ability in the CV scenario could 
be the result of using the same environmental conditions in which both 
the training and validation populations are evaluated [73]. Nonetheless, 
independent validations present a more realistic approach to plant 
breeding, as this GS strategy aims to predict the performance of lines that 
are yet to be evaluated in different environments or trials. In CV, we 
observed significant differences in prediction ability between using 
combined (BLUP) and individual (BLUE) datasets for predictions (0.19 vs 
0.12), showing the advantage of combining environments across different 
years to capture variability for grain yield. Moreover, predicting within 
the same environment (e.g., LND predicting LND) for the IP1 scenario  
was significantly higher compared to across environment predictions  
(P < 0.0001), demonstrating the relevance of predicting within the same 
environment as effects of QTLs could vary across different environments 
and lead to poor prediction accuracies [74]. The variability of prediction 
ability values observed across different scenarios and datasets could be 
primarily due to the differences across the environments used for 
predictions, as indicated by low to moderate genetic correlations among 
the environments (Supplementary Tables S1–S3). The proportion of 
additive variance to the total genetic variance across different datasets 
was also related to improved prediction ability. In general, it was observed 
that the higher the proportion of additive variance, the higher the mean 
prediction ability across datasets. A positive correlation (r = 0.35) between 
prediction ability and additive variance to total genetic variance ratios 
was observed across the datasets used for analyses.  

Prediction Ability for Covariate and Multivariate Models 

Covariate models incorporating reflectance indices as fixed effect 
predictor traits resulted in higher accuracies compared to multivariate 
across all prediction scenarios (0.10 vs 0.02). Using covariate multi-trait 
models further resulted in a 50% gain in prediction ability compared to 
using covariate single-trait model, whereas no significant differences were 
observed within multivariate models regardless of the number of 
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secondary traits. In contrast with our results, the superiority of 
multivariate models for predicting yield has been previously 
demonstrated in wheat [32,75]. Our results thus rendered some interesting 
observations regarding the use of these types of models for predicting 
grain yield in the presence of secondary traits across different CV and IP 
scenarios for PNW winter wheat.  

First, multivariate models might not be advantageous for predicting 
lines with little or no genetic relatedness even when there is a high genetic 
correlation between the predictor and target traits, as in our case. Similar 
with the IP1 scenario, when a breeding panel was previously used to 
predict wheat DH lines, reduced predictions were observed in wheat, 
which was attributed to the presence of opposite linkage phases between 
SNPs and QTL for yield for genetically distant populations [76]. We 
observed the relevance of relatedness between the training and validation 
panels to achieve maximum prediction ability, particularly under the IP2 
scenario, consistent with previous studies which highlighted the 
importance of genetic relationships between the populations used for 
predictions [77–80]. Among the breeding lines, an increased genetic 
(Rogers) distance between the training and test panels was related to a 
decrease in accuracy. Altogether, highest mean prediction ability was 
observed for the F5 lines (0.16), followed by the DH (0.14), and the across 
population predictions (0.11), with Rogers distance of 0.05, 0.13, and 0.40, 
respectively. PCA revealed less genetic differentiation among the F5 lines, 
whereas the DH lines formed two distinct clusters, based on location. 
Predicting within the populations (i.e., F5 predicting F5; DH predicting DH 
lines) showed a 36% advantage compared to across population 
predictions, indicating the need to use genetically related populations to 
achieve optimal prediction ability.  

Second, incorporating multiple traits is essential to achieve optimal 
predictions when the target trait has low heritability. A 43% and 64% 
increase in prediction ability was observed for multi-trait models for the 
low heritability datasets LND17_F5 (H2 = 0.15) and PUL17_F5 (H2 = 0.13). 
Likewise, Guo et al. [81] previously observed that multi-trait approaches 
performed better than single trait models when evaluating traits with low 
heritability and lots of missing data using simulations. Furthermore, 
multi-trait analysis enabled more accurate predictions of breeding values 
for low heritable traits (heritability of 0.10) that are correlated with highly 
heritable traits (heritability of 0.80) by utilizing correlation structure 
between traits under a Bayesian regression model [82]. In barley, PLS did 
not perform well on traits with medium or high heritability and a smaller 
training set [83]. Overall, although the observed heritability values for 
grain yield in the current study were within the range of published values 
in wheat [4,84,85], we still observed a weak correlation (r = 0.06) between 
heritability and mean prediction ability across datasets for the cross-
validations. There was also no significant difference in average accuracies 
in using the DH datasets (where grain yield had higher heritability values) 
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for predictions in the IP2 scenario. Taken together, these observations 
suggest that the heritability of the target trait was secondary only to 
genetic relatedness and the type of prediction model affecting GS accuracy 
for yield in PNW winter wheat. It was interesting to note, nevertheless, 
that the heritability of the secondary spectral traits was related to 
improved predictions in the covariate PLS models, where using SR (H2 
between 0.52 and 0.95) for GS significantly improved prediction ability for 
yield (Figure 2C) under the IP2 scenario. This suggests that the prediction 
ability of a lowly heritable target trait could be improved by using one or 
multiple secondary predictor traits with higher heritability when using 
genetically related populations under covariate models. Lastly, size of the 
training population was relevant to attain improved accuracies, 
particularly in the IP2 scenario where predictions where done within the 
breeding lines (with differing size of the TP), consistent with previous 
studies demonstrating the importance of TP size in achieving optimal 
accuracy [67,80,86,87]. Using larger population sizes as TP (PUL17 and 
PUL18) resulted to an average of 14% increase in the prediction ability for 
yield in the IP2 scenario. 

The multivariate approach implemented in the current study 
resembles a breeding program where plots are yet to be harvested, similar 
with earlier methods used in wheat [32,75]. This scenario then allows 
breeders to select for yield based on the predicted values from GS models 
that incorporate secondary spectral reflectance traits. Previously, it has 
been shown that these secondary spectral traits have a huge potential for 
the indirect selection of yield in US Pacific Northwest winter wheat, since 
they have high genetic and phenotypic correlations [24,40]. Additionally, 
it has been shown that the inclusion of these traits in prediction models 
could improve the accuracy for yield [30,32,75]. Breeders could therefore 
use these HTP traits, which could be collected in either single plants or in 
plots, as proxy measurements for yield potential, as a basis of selecting 
higher yielding lines throughout the growing season as they could be 
predictive of the final yield observed in the field.  

CONCLUSIONS 

The prediction ability of single and multiple trait prediction models for 
yield in PNW winter wheat was evaluated. Our results showed the 
feasibility of using least square regression models incorporating 
secondary traits to predict yield in soft winter wheat. Covariate models 
were superior to multivariate in predicting grain yield in the presence of 
secondary traits from high-throughput field phenotyping. Multi-trait 
models also showed an advantage over single trait prediction models for 
grain yield. The influence of relatedness and size of the training 
population on genomic selection accuracy was observed, whereas there 
was no apparent relationship between heritability and prediction ability. 
When using related populations, using of highly heritable HTP traits such 
as simple ratio, either alone or in combination with other spectral traits 
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significantly improved prediction ability for yield under the covariate 
models. Predicting within the same environments resulted to higher 
accuracies. Overall, the results presented herein demonstrated the power 
of combining different genomic and phenotypic approaches to accelerate 
plant breeding and the potential to improve genetic gains for complex 
traits in wheat breeding programs. Other prediction models such as 
multivariate Bayesian, genomic BLUP, and machine learning approaches 
will also be explored for these GS scenarios for grain yield in the WSU 
winter wheat breeding program.  

SUPPLEMENTARY MATERIALS 
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• Supplementary Table S1: Genetic correlation for grain yield between 
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• Supplementary Table S2: Genetic correlation for grain yield between 
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• Supplementary Table S3: Genetic correlation for grain yield between 
different datasets for the F5 and DH winter wheat breeding lines,  

• Supplementary Table S4: Additive and total genetic variances 
observed for grain yield across different US Pacific Northwest soft 
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• Supplementary Table S5: Prediction ability of partial least square (PLS) 
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