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ABSTRACT 

Elevating resistance levels to bacterial leaf streak (BLS), caused by 
Xanthomonas campestris pv. translucens (Jones, Johnson, & Reddy) and 
Fusarium head blight (FHB) caused by Fusarium graminearum Schwabe 
(telomorph Gibberella zeae (Schwein.) Petch) are major objectives of 
several hard red spring wheat (Triticum aestivum L.; HRSW) breeding 
programs situated in the northern Great Plains of the USA. High grain yield 
significantly contributes to the success of HRSW cultivars. Other traits, 
such as disease resistance, are most useful when accompanied by high 
grain yield in a single genotype. The genotype by yield-trait (GYT) analysis 
method aids in selecting genotypes with elevated performance levels for 
traits of consideration in the presence of high grain yield. Replicated yield 
trial data was subjected to GYT analysis to demonstrate its utility for 
selecting HRSW genotypes for use as parents and further consideration 
toward cultivar release. Genotype selections were identified based on 
overall performance while strong and weak characteristics were also 
investigated. Several genotypes were selected for potential use as parents 
while three were chosen for further cultivar release consideration. 
Performance levels associated with two of the three candidate cultivars 
were greater than average for all traits considered. 

KEYWORDS: biplot analysis; genotype by trait (GT) analysis; genotype by 
yield-trait (GYT) analysis; genotype selection; wheat; Fusarium head blight; 
bacterial leaf streak 

INTRODUCTION 

Elevating resistance levels to bacterial leaf streak (BLS), caused by 
Xanthomonas campestris pv. translucens (Jones, Johnson, & Reddy) and 
Fusarium head blight (FHB) caused by Fusarium graminearum Schwabe 
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(telomorph Gibberella zeae (Schwein.) Petch) are major objectives of 
several hard red spring wheat (Triticum aestivum L.; HRSW) breeding 
programs situated in the northern Great Plains of the USA. Both diseases 
have been documented as occuring in the USA for at least 100 years [1,2], 
and various levels of economic damage to wheat crops have been 
documented [3,4]. Each disease thrives when accompanied by elevated 
humidity at optimal temperatures. Likewise, reduced tillage practices in 
wheat production areas as well as alternate pathogen hosts tend to 
increase the likelihood of disease development due to inoculum 
accumulation. Fungicide application can help to reduce losses to FHB [5,6], 
though economically practical chemical control of BLS is not yet available. 
Even with fungicide application to control FHB damage, higher levels of 
control are achieved when moderately resistant cultivars are grown [7,8]. 
Taken together, these circumstances suggest that efforts by HRSW 
breeders to increase resistance levels for both diseases are a practical and 
economically sound means of disease management. 

Wheat growers generally expect new cultivars to outperform old 
cultivars with respect to grain yield. Although elevated levels of disease 
resistance can help to achieve increased productivity, it is unlikely that 
new cultivars with high levels of disease resistance would receive 
widespread and consistent grower acceptance if they produce less grain 
than those presently available. Therefore, breeders strive to achieve a 
balance between grain yield and other traits of importance. Recently, Yan 
and Frégeau-Reid [9] formally introduced a genotype-by-yield*trait (GYT) 
approach to biplot analysis that specifically addresses genotype selection 
based on concurrent consideration of grain yield and other traits of 
interest. 

A generalized method of biplot analysis was first proposed by Gabriel 
[10] as a means of analyzing data in a two-way table. The effectiveness of 
biplot analysis for studying multi-environment trial (MET) data, that also 
take the form of a two-way (e.g., genotype-by-environment; GE) table, was 
then demonstrated [11–13] and Yan [14] introduced the GGEbiplot 
software platform as a user-friendly means of analysis implementation. 
Utility of the GGEbiplot analysis software may be limited only by the 
imagination of users. Several approaches to biplot analysis have been 
demonstrated that range from examining single trial data for human 
errors [15] and exploring Net Blotch (Pyrenophora teres Drechs) isolates 
on barley (Hordium vulgare L.) genotypes [16] to the examination of 
quantitative trait loci-by-envrinoment interactions [17]. Among the 
numerous forms of biplot analysis, however, versions of GE and genotype-
by-trait (GT) analysis are likely reported most prevalently. 

Multi-environment trial evaluation of genotype performance for single 
traits can be carried out by coalescing “years” and “locations” into 
“environments” to create a two-way GE table. A few subsequent outcomes 
of GE biplot analysis include; genotype performance evaluation, 
megaenvironment detection, and evaluation of environments for 
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representativness and discriminating ability. Genotype-by-trait analysis 
can aid with understanding trait relationships (i.e., correlations) within a 
group of genotypes and provide information regarding trait profiles for 
each genotype. An understanding of trait relationships can provide clues 
with regard to expectations for combining optimal values of multiple traits 
into a single genotype. Further, an understanding of trait profiles specific 
to individual genoptyes can aid in parental slection and identify unique 
charactersitics of potential cultivars.  

Wheat genotypes possess a collection of traits for consideration when 
making selections, though grain yield is typically thought of as most 
important. The GYT biplot formulation is a simple extension of typical GT 
biplot analysis that allows simultaneous consideration of all traits with 
respect to grain yield. This is accomplished by creating new yield-trait 
combinations for each genotype [9]. A notable difference among GYT and 
GT biplot analysis is that a vector representing grain yield is absent from 
a GYT biplot because its values are captured within those of newly created 
yield-trait combinations. An additional unique characteristic of the GYT 
biplot approach, as compared to GT analysis, is that a superiority index is 
ultimately produced for making genotype selections [9]. 

For the purpose of parental selection, or further consideration toward 
eventual cultivar release, it is usually sufficient for HRSW breeders to 
make selections based on genotype performance from one or two growing 
seasons. However, prior to presenting data to release committees in the 
hope of going forward with a new cultivar, breeding programs typically 
evaluate performance of candidate breeding lines for at least three 
growing seasons in advanced METs. 

The objective of this research was to illustrate the use of GYT biplot 
analysis as a means of identifying HRSW genotypes that possess high 
agronomic potential along with BLS and FHB resistance for the purpose of 
parental selection and additional consideration toward eventual release. 
This was accomplished by analyzing a datset composed of genotypes 
included in the South Dakota State University (SDSU) HRSW breeding 
program advanced yield trial (AYT) from growing seasons 2017–2018. 
With a framework to build upon provided by brief consideration of a 
typical GT analysis of the data, the same data was used to present the GYT 
analysis scheme for parental selection and further program consideration. 

MATERIALS AND METHODS 

Plant Materials and Growth Practices 

Data used for analysis consisted of agronomic performance as well as 
BLS and FHB screening nursery resistance observations collected on all 
genotypes included in the SDSU-HRSW-AYT during both 2017–2018 
growing seasons. Each year the AYT was composed of 48 genotypes, 28 of 
which were common over the two growing seasons. Of the 28 genotypes, 
14 were previously released and named check cultivars included in each 
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year of the AYT for purposes of comparison. The remaining 14 genotypes, 
generally designated as “SDXXXX”, were experimental breeding lines. The 
number of agronomic trial locations harvested in each growing season 
was variable because some sown locations were lost due to hail, drought, 
etc. Seven and ten locations were harvested in each of the respective study 
years. All trial locations were sown in April or May of each year as a 
randomized complete block (RCB) design composed of three replications. 
Plots were sown as 1.5 by 6.0 m in length consisting of seven rows (21.4 cm 
row spacing) though after heading, each was cut to final a harvest length 
of 5.3 m. Soil fertility levels and weed control practices were consistent 
with those of commercial production in the region. 

Disease evaluations took place in nurseries where genotypes were 
sown as single rows measuring 1.5 m long with 35 cm spacing between 
rows and trials were formed as RCB designs composed of three 
replications. Each year, FHB resistance observations were collected from 
two nurseries grown near Brookings and Volga, South Dakota, while BLS 
resistance screening took place at a single nursery located near Brookings. 

Disease Evaluation 

Nearly all methods utilized for inoculation, resistance evaluation, and 
data collection in the disease nurseries were consistent with those 
routinely employed by the SDSU-HRSW breeding program [18,19]. An 
additional step not reported by Kadariya, et al. [18], however, was that 
after percent Fusarium damaged kernel (FDK) estimates were collected 
from each harvested FHB nursery row, samples were then ground with a 
Udy Cyclone sample mill (Udy Corporation, Fort Collins, CO, USA) to create 
a fine powder that was provided to the North Dakota State University 
Veterinary Diagnostic Laboratory for deoxynivalenol (DON) concentration 
determinations. Ultimately, three FHB resistance measures including 
Disease Index [20], FDK percentage, and DON concentration were aquired 
for each genotype. Resistance to BLS was reported as area under the 
disease progress curve (AUDPC) as in Kandel et al. [19]. 

Agronomic Evaluation 

During each growing season, heading date (measured as ~50% spike 
emergence; expressed as days > 1 Jun) and plant height (cm) observations 
were collected at nearly all trial locations. At maturity, plots were 
harvested in July or August of each year with a Kincaid 8-XP (Kincaid, 
Haven, KS, USA) plot combine where grain yield (kg·ha−1) and test weight 
(kg·m−3) for each plot were collected. Grain protein content (g·kg−1) was 
then determined for each plot by passing samples through a FOSS Infratec 
1241 grain analyzer (Foss, Laurel, MD, USA) and expressed on a 12 percent 
moisture basis (approved method 39-10) [21]. 
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Data Analysis 

Agronomic, BLS, and FHB resistance data from all trials were merged 
into a single dataset for analysis. All biplot analysis steps were carried out 
within the GGEbiplot software platform (http://GGEbiplot.com). By default, 
the GGEbiplot platform positions trait vector markers to represent high 
values. For GT analysis, vectors depciting disease resistance traits, plant 
height, and heading date were reversed to achieve a preferred orientation 
toward low values. Low values for each of these traits were also chosen as 
preferable in the GYT analysis. Log files associated with each analysis were 
used to create summary and correlation tables. Superiority index values 
for each genotype were calculated as the mean of its standardized yield-
trait combinations. 

RESULTS 

Genotype by Trait Analysis of 2017–2018 AYT 

Means of each genotype included in the 2017–2018 AYT are presented 
in Table 1, several of which were composed of values collected at 17 
environments, though heading date and plant height were only collected 
at 16 environments. Levels of FHB and BLS resistance were reported only 
from inoculated nurseries. Correlations among trait means are presented 
in Table 2. A GT biplot (such as Figure 1) where “Scaling = 1”, “Centering = 
2”, and “SVP = 2”, provides a graphical depiction of information presented 
in Tables 1 and 2. These constraints result in several noteworthy points of 
interest associated with a GT biplot [9,15]. 

Table 1. Genotype by trait means of 28 hard red spring wheat genotypes grown in 2017–2018 South Dakota 
State University advanced yield trial. Trait values are means across specified number of locations. 

Genotype YIELD TW GPC DAYS HEIGHT AUDPC DIS FDK DON 
Advance 2968 775 152 19.4 69.6 346 20.7 21.3 1.9 

Boost 2895 758 164 21.7 75.1 279 19.1 17.9 0.8 
Brick 2791 779 160 15.3 71.5 421 13.9 15.4 0.8 
Briggs 2765 758 162 17.3 71.4 403 21.6 28.8 1.6 
Faller 2930 752 150 21.9 76.3 426 17.2 25.0 2.4 
Focus 2777 779 166 15.3 73.0 403 15.5 17.1 1.4 

Forefront 2980 773 160 16.9 78.2 403 14.6 23.8 1.0 
LCS-Trigger 3315 761 144 23.9 74.6 300 24.6 19.2 1.5 

Oxen 2911 747 158 18.1 69.1 455 24.1 43.3 1.9 
Prevail 3154 762 154 18.3 71.7 347 18.4 19.2 1.4 
Select 2767 778 157 16.6 71.4 444 19.5 24.6 1.6 

Steele-ND 2832 763 161 19.6 75.7 455 22.3 33.3 3.7 
Surpass 2872 755 158 17.2 68.1 323 16.8 20.4 1.3 
Traverse 3051 732 151 18.7 74.7 403 21.3 49.2 1.8 
SD4539 3057 765 159 20.3 78.0 338 18.2 20.8 1.3 
SD4625 3172 769 157 19.3 73.1 328 18.2 19.6 1.4 
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Table 1. Cont. 

Genotype YIELD TW GPC DAYS HEIGHT AUDPC DIS FDK DON 
SD4706 3065 762 156 16.3 74.1 455 19.3 34.2 2.8 
SD4707 2683 733 165 18.3 69.7 444 25.1 37.1 1.8 
SD4708 3010 773 160 18.4 72.8 384 18.1 26.7 1.0 
SD4711 2949 774 160 15.7 71.8 519 18.7 29.6 1.7 
SD4719 3142 762 155 20.6 75.0 409 19.4 30.4 2.4 
SD4720 2747 751 173 19.5 74.2 386 20.7 30.0 2.2 
SD4721 2832 756 163 18.4 67.0 409 17.7 32.9 2.8 
SD4740 2774 770 158 17.6 70.5 426 18.4 22.5 1.3 
SD4745 2809 768 170 19.1 74.6 369 18.9 39.2 2.2 
SD4746 2773 784 163 18.1 69.9 438 23.9 28.3 1.7 
SD4748 2708 754 161 16.6 69.1 449 17.9 25.0 1.4 
SD4752 2833 774 162 19.9 74.3 392 16.4 22.5 0.8 
Mean 2913 763 159 18.5 72.7 398 19.3 27 1.7 

Std Dev 160 13 6.0 2.0 2.9 54 2.9 8.3 0.7 
Environments 17 17 17 16 16 2 4 4 4 

Traits include: YIELD: grain yield (kg·ha−1); TW: test weight (kg·m−3); GPC: grain protein content (g·kg−1); DAYS: heading 

date (~50% head emergence > 1 Jun); HEIGHT: plant height (cm); AUDPC: area under Bacterial leaf streak disease 

progress curve (area); DIS: Fusarium head blight disease index (%); FDK: Fusarium damaged kernels (%); DON: 

deoxynivalenol concentration (ppm). 

Table 2. Pearson Product Moment correlations among nine traits collected from 28 genotypes grown in 
2017–2018 South Dakota State University advanced yield trial.  

Traits YIELD TW GPC DAYS HEIGHT AUDPC DIS FDK 
TW −0.01        
GPC −0.71 0.09       
DAYS −0.47 0.27 0.34      
HEIGHT −0.41 −0.07 0.09 0.42     
AUDPC 0.44 −0.01 −0.16 −0.57 −0.21    
DIS −0.05 0.43 0.12 0.36 −0.18 0.08   
FDK 0.11 0.60 −0.12 −0.04 −0.06 0.46 0.52  
DON 0.03 0.28 −0.03 0.14 0.02 0.38 0.38 0.55 

Thresholds for significant correlations are P < 0.05 = 0.382, and P < 0.01 = 0.483. Traits include: YIELD: grain yield (kg·ha−1); 

TW: test weight (kg·m−3); GPC: grain protein content (g·kg−1); DAYS: heading date (~50% head emergence > 1 Jun); HEIGHT: 

plant height (cm); AUDPC: area under Bacterial leaf streak disease progress curve (area); DIS: Fusarium head blight 

disease index (%); FDK: Fusarium damaged kernels (%); DON: deoxynivalenol concentration (ppm).  

Total variation of the 2017–2018 AYT datset depicted in the first two 
dimensions used to generate the GT biplot was 57.9% (Figure 1). Each of 
the three FHB disease resistance traits (DIS, FDK, and DON) were drawn 
with acute angles to one another (Figure 1) and their correlations were 
generally significant (P < 0.01) although the correlation between DIS and 
DON did not achieve significance (Table 2). None of these traits were 
correlated with grain yield, protein content, heading date, or plant height, 
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but DIS and FDK values were significantly correlated with test weight, and 
FDK was significantly correlated with AUDPC (Table 2). The AUDPC trait 
was significantly correlated with grain yield and significantly negatively 
correlated with heading date (Table 2). Figure 1 reveals obtuse angles 
between the grain yield vector and each of the protein content, heading 
date, and plant height vectors. Each of these correlations was negative and 
significant (Table 2). The nearly right angle drawn between the grain yield 
and test weight vectors revealed that the two traits were uncorrelated 
(Figure 1; Table 2). 

 

Figure 1. Genotype by trait (GT) biplot of mean data for 28 hard red spring wheat genotypes grown in 2017–
2018 South Dakota State University advanced yield trial based on singular value decomposition of trait-
standardized data (“Scaling = 1, Centering = 2”) and trait-focused singular value partition (“SVP = 2”). Traits 
include: YIELD: grain yield (kg·ha−1); TW: test weight (kg·m−3); GPC: grain protein content (g·kg−1); DAYS: 
heading date (~50% head emergence > 1 Jun); HEIGHT: plant height (cm); AUDPC: area under Bacterial leaf 
streak disease progress curve (area); DIS: Fusarium head blight disease index (%); FDK: Fusarium damaged 
kernels (%); DON: deoxynivalenol concentration (ppm). Underlined trait vector markers indicate those that 
were reversed to display preferred orientation. 

The cultivar “LCS-Trigger” was included in the AYT as a high-yielding 
check that produced more grain than all other genotypes (Table 1). Figure 
1 also revealed that this was the case with its long projection on the YIELD 
vector, though it was also among those with the lowest AUDPC scores. 

Crop Breed Genet Genom. 2020;2(2):e200009. https://doi.org/10.20900/cbgg20200009 



 
Crop Breeding, Genetics and Genomics 8 of 18 

Figure 1 also revealed that it was among genotypes with the latest heading 
date, lowest protein content, and tallest plant height. In fact, its heading 
date was latest, it had lowest protein content, and was eighth tallest among 
all 28 genotypes (Table 1). Other high yielding genotypes included 
experimental lines SD4539, SD4625, and SD4719 along with the check 
cultivars “Boost”, (hidden behind SD4625) “Prevail”, “Faller”, “Advance”, 
and “Traverse” (Figure 1). Among the three experimental lines, SD4539 
was characterized with the sixth highest grain yield mean and second 
highest plant height with better than average performance for the 
remaining traits (Table 1). SD4625 had the second highest grain yield mean 
with somewhat less than average grain protein content. It was also slightly 
taller and later than average, though its disease resistance levels were all 
better than average (Table 1). SD4719 was fourth best in terms of grain 
yield production, though its performance levels for each of the remaining 
traits were lower than average. 

Among the check cultivars, Boost was most notable for the lowest 
AUDPC score, better than average values for the FHB resistance traits, 
third latest heading date, and fifth highest grain protein average, though 
its grain yield mean was lower than average. With the third highest grain 
yield mean, Prevail would best be described as producing grain with 
slightly low test weight and less than average grain protein, but was better 
than average for the remaining traits (Table 1). Advance, Faller, and 
Traverse also produced more grain than average, and had protein content 
means that were well below average. Faller and Traverse also had low test 
weight means. With high average values for each of the FHB resistance 
traits, Traverse was among the most susceptible, especially with regard to 
FDK values (Table 1). 

In further selecting for productivity as well as FHB and BLS resistance, 
Figure 1 shows that experimental lines SD4708 and SD4752 as well as 
checks “Forefront” and “Surpass” warranted consideration. SD4708 was 
better than average for each of the disease resistiance traits and had the 
eighth highest grain yield mean as well as ninth heaviest test weight. 
SD4752 was quite similar, though its grain yield mean was less than 
average. Both of these genotypes had high levels of resistance to DON 
accumulation. SD4752 was tied with Boost for the second lowest, while 
SD4708 was next with third lowest, mean DON accumulation (Table 1). 
Forefront and Surpass had similar and better than average levels of 
resistance to FHB while Surpass had a lower than average AUDPC score 
(Table 1). Forefront had a higher than average AUDPC mean and was 
tallest among all genotypes while the plant height of Surpass was less than 
average. Both had early heading dates and Forefront had a higher grain 
yield mean (Table 1). 

Genotype by Yield Trait Analysis of 2017–2018 AYT 

Table 3 contains standardized yield-trait combinations of the GYT data 
for each genotype that were derived by combining traits presented in 
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Table 1 with grain yield. As an example, Y*TW is the standardized version 
of the product of grain yield and test weight. Those yield-trait 
combinations followed by “-1” such as, Y*DIS-1 represent products of grain 
yield and trait values that were chosen with preference toward lower 
numerical scores. As a result, high values are always preferable in the 
standardized GYT table. 

Table 3. Standardized genotype by yield*trait (GYT) data and superiority index of 28 hard red spring wheat 
genotypes grown in 2017–2018 South Dakota State University advanced yield trial. 

Genotype Y*TW Y*GPC Y*DAYS-1 Y*HEIGHT-1 Y*AUDPC-1 Y*DIS-1 Y*FDK-1 Y*DON-1 INDEX 

SD4625 1.72 1.96 0.55 1.58 1.63 1.01 1.29 0.91 1.33 

Prevail 1.43 1.23 1.09 1.85 1.28 0.9 1.31 0.86 1.24 

LCS-Trigger 2.37 0.82 −1.77 2.03 2.43 −1.09 1.59 0.92 0.91 

SD4708 0.82 1.04 0.48 0.6 0.4 0.63 0.18 1.24 0.67 

Forefront 0.64 0.69 1.18 −1.02 0.04 1.76 0.47 1.16 0.62 

SD4539 0.91 1.32 −0.43 −0.51 1.2 0.73 0.94 0.76 0.62 

Surpass −0.43 −0.49 0.56 0.91 0.99 0.73 0.67 0.5 0.43 

SD4719 1.35 1.4 −0.31 0.84 0.27 0.48 −0.08 −0.69 0.41 

Brick −0.37 −0.97 1.2 −0.48 −0.58 1.45 1.08 1.04 0.29 

Advance 0.61 −0.61 −0.26 1.19 0.88 −0.36 0.74 −0.14 0.26 

SD4706 0.88 0.82 1.87 0.6 −0.59 0.37 −0.63 −1.44 0.24 

Boost −0.24 0.62 −1.76 −0.74 1.67 0.04 0.99 1.23 0.23 

SD4711 0.47 0.44 1.72 0.48 −1.73 0.31 −0.25 0.07 0.19 

Focus −0.48 −0.2 1.14 −0.95 −0.36 0.91 0.87 0.25 0.15 

SD4752 −0.25 −0.26 −1.01 −0.92 −0.09 0.77 0.38 1.11 −0.03 

Traverse 0.08 −0.09 0.44 0.35 0.18 −0.38 −2.43 0.07 −0.22 

SD4721 −0.63 −0.16 −0.22 0.94 −0.33 0.34 −0.77 −1.67 −0.31 

SD4740 −0.68 −1.37 −0.04 −0.35 −0.69 −0.02 0.28 0.41 −0.31 

Select −0.55 −1.59 0.46 −0.61 −0.94 −0.38 0.05 −0.06 −0.45 

SD4745 −0.51 0.86 −0.7 −1.15 0.19 −0.11 −1.48 −0.88 −0.47 

Oxen −0.39 −0.22 0.25 0.92 −0.85 −1.62 −1.85 −0.25 −0.5 

SD4748 −1.42 −1.51 0.22 −0.45 −1.12 −0.03 −0.09 0.11 −0.54 

Faller −0.15 −1.33 −1.75 −0.82 −0.4 0.74 0.25 −0.95 −0.55 

Briggs −1.01 −0.93 0.1 −0.63 −0.39 −1.08 −0.41 −0.12 −0.56 

SD4746 −0.39 −0.62 −0.28 −0.22 −0.85 −1.8 −0.35 −0.18 −0.59 

SD4720 −1.25 0.74 −1.1 −1.43 −0.18 −0.82 −0.56 −0.85 −0.68 

Steele-ND −0.48 −0.35 −0.89 −1.28 −0.99 −1.14 −0.82 −2.96 −1.11 

SD4707 −2.02 −1.24 −0.74 −0.75 −1.09 −2.32 −1.39 −0.46 −1.25 

Mean 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  

Std Dev 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0  

Traits include: Yield (Y)*TW: test weight; Y*GPC: grain protein content; Y*DAYS: heading date; Y*HEIGHT: plant height; Y*AUDPC: area 

under Bacterial leaf streak disease progress curve; Y*DIS: Fusarium head blight disease index; Y*FDK: Fusarium damaged kernels; 

Y*DON: deoxynivalenol concentration; and INDEX: superiority index. Traits including -1 indicate those that were chosen with 

preference for low values. 
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Figure 2. Average tester coordinate view of Genotype by yield*trait (GYT) biplot for consideration of overall 
superiority, strengths, and weaknesses of 28 hard red spring wheat genotypes grown in 2017–2018 South 
Dakota State University advanced yield trial based on singular value decomposition of trait-standardized 
data (“Scaling = 1, Centering = 2”) and genotype-focused singular value partition (“SVP = 1”). Traits include: 
Yield (Y)*TW: test weight; Y*GPC: grain protein content; Y*DAYS: heading date; Y*HEIGHT: plant height; 
Y*AUDPC: area under Bacterial leaf streak disease progress curve; Y*DIS: Fusarium head blight disease 
index; Y*FDK: Fusarium damaged kernels; Y*DON: deoxynivalenol concentration. Trait vector markers 
including -1 indicate those chosen with preference for low values. 

Figure 2 is the average tester coordinate (ATC) biplot view based on 
genotype-focused singular value partitioning (“SVP = 1”) of the 
standardized GYT data (Table 3). Figure 3 is the tester vector view of the 
same data though based on trait-focused singular value partitioning (“SVP 
= 2”). Total variation depicted in the first two dimensions of this data was 
62.9%. By default, the GGEBiplot software program produces Figure 2 
upon completion of the GYT analysis routine. Its formulation is best-suited 
to focusing on genotypes while Figure 3 is best for examining relationships 
among yield-trait combinations [9]. In a GYT biplot analysis, each yield-
trait combination includes grain yield as a component. Consequently, 
correlations among most yield-trait combinations tend to be positive. 
These relationships are easily viewed on Figure 3, though it is also 
immediately apparent that not all yield-trait combinations were positively 
correlated. The most notable example was that of the relationship between 
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Y*DAYS-1 and Y*AUDPC-1 ratings, which were negatively associated, 
though their correlation was not significant (Table 4). The characteristic of 
generally positive correlations among yield-trait combinations allows 
genotype selection to take place because a meaningful average vector can 
be calculated. Yield-trait combinations are equivelent to testers in a GYT 
biplot analysis. Figures 2 and 3 each poseess two bold lines that intersect 
at the biplot origin; one with a single arrow point and one that is double-
arrowed. The line with a single arrow is the average tester axis (ATA). 
Location of the ATA on the figure denotes the average placement of all 
yield-trait combination vectors. The small circle located on the ATA 
indicates the average value of each yield-trait combination. The ATA 
points in the direction of high mean performance. The double-arrowed 
line separates genotypes with better than average overall performance 
from those with less than average overall performance. Since the ATA 
arrow points towards high performance, genotypes situated to the right of 
the double-arrowed line are those of most interest for selection. The 
double-arrowed line also provides information as to whether a genotype’s 
triat profile was quite well-rounded or obviously strong or weak for a 
certain trait or group of traits. Genotypes with short projections on the 
double-arrowed line are more balanced while those placed farther from 
the ATA, regardless of direction, have obvious strong or weak 
characteristics. 

Table 4. Pearson Product Moment correlations among eight yield-trait combinations collected from 28 
genotypes grown in 2017–2018 South Dakota State University advanced yield trial.  

Traits Y*TW Y*GPC Y*DAYS-1 Y*HEIGHT-1 Y*AUDPC-1 Y*DIS-1 Y*FDK-1 
Y*GPC 0.72       
Y*DAYS 0.14 0.09      
Y*HEIGHT 0.68 0.38 0.24     
Y*AUDPC 0.66 0.60 −0.30 0.49    
Y*DIS 0.40 0.33 0.41 0.07 0.26   
Y*FDK 0.50 0.22 0.00 0.25 0.57 0.54  
Y*DON 0.33 0.19 0.16 0.21 0.48 0.41 0.59 

Thresholds for significant correlations are P < 0.05 = 0.382, and P < 0.01 = 0.483. Traits include: Yield (Y)*TW: test weight; 

Y*GPC: grain protein content; Y*DAYS: heading date; Y*HEIGHT: plant height; Y*AUDPC: area under Bacterial leaf streak 

disease progress curve; Y*DIS: Fusarium head blight disease index; Y*FDK: Fusarium damaged kernels; Y*DON: 

deoxynivalenol concentration; and INDEX: superiority index. Traits including -1 indicate those that were chosen with 

preference for low values. 
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Figure 3. Tester vector view of Genotype by yield*trait (GYT) biplot for revealing associations among the 
yield-trait combinations of 28 hard red spring wheat genotypes grown in 2017–2018 South Dakota State 
University advanced yield trial based on singular value decomposition of trait-standardized data (“Scaling 
= 1, Centering = 2”) and trait-focused singular value partition (“SVP = 2”). Traits include: Yield (Y)*TW: test 
weight; Y*GPC: grain protein content; Y*DAYS: heading date; Y*HEIGHT: plant height; Y*AUDPC: area under 
Bacterial leaf streak disease progress curve; Y*DIS: Fusarium head blight disease index; Y*FDK: Fusarium 
damaged kernels; Y*DON: deoxynivalenol concentration. Trait vector markers including -1 indicate those 
chosen with preference for low values. 

With these points in mind, overall genotype performance can be judged 
in reference to ATA placement while strong or weak characteristics can be 
evaluated with respect to projections on the double-arrowed line. By 
moving from right to left on the ATA (Figure 2), SD4625 was found to have 
the best overall performance. This was followed by Prevail, LCS-Trigger, 
SD4539, SD4708, Forefront, SD4719, and so on. At the far left end of the 
ATA, “Steele-ND” and SD4707 were clearly worst in overall performance 
(Figure 2). Superiority index values (Table 3), calculated as the mean of 
standardized yield-trait combinations for each genotype, are in close 
agreement with overall performance gathered by observing placement 
order beginning from the arrow point on the ATA. 

Of the genotypes ranked highest for ovrall performance, the projection 
of LCS-Trigger onto the double-arroowed line of Figure 2 was clearly 
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largest, followed by Forefront, SD4625, and SD4719. Strong or weak 
characteristics associated with each of these genotypes could be 
determined through inspection of Table 3, however, Figure 2 graphically 
provided similar information. For example, the projection of LCS-Trigger 
in the direction of Y*AUDPC-1, Y*HEIGHT-1, Y*GPC, and Y*TW suggests 
strong performance levels with regard to those yield-trait combinations. 
The opposite was true of its performance concerning yield-trait 
combinations in the reverse direction. In actuality, LCS-Trigger had the 
highest standardized values among all genotypes for the Y*AUDPC-1, 
Y*HEIGHT-1, and Y*TW yield-trait combinations while it was lowest for 
Y*DAYS-1 and among the lowest for Y*DIS-1 (Table 3). Forefront was 
notable for its high Y*DIS-1 and Y*DON-1 and low Y*HEIGHT-1 values. 
SD4625 and SD4719 were generally similar, though SD4719 had lower 
values for Y*DAYS-1 and was among lowest of all genotypes for Y*DON-1. 
SD4625 was placed away from the ATA because of its high Y*TW, Y*GPC, 
and Y*HEIGHT-1 values. SD4708 was placed very near to the ATA 
indicating a consistent or well-rounded level of performance. In contrast 
to genotypes with high overall performance, SD4707 was ranked lowest, 
but also in a consistent fashion. None of its yield-trait combination values 
were close to average (Table 3) and this was reflected by its close proximity 
to the ATA (Figure 2). 

DISCUSSION 

Genotype by Trait Analysis of 2017–2018 AYT 

Traits relating to disease resistance are typically scored in a fashion 
where low numerical values are preferred for selecting higher resistance 
while high values of other traits, like grain yield or test weight, are 
concurrently used for selection. To remove need for remembering which 
traits displayed on a GT biplot would best be selected based on high or low 
levels, the GGEbiplot software platform allows users to reverse individual 
trait vectors at will. Growers located in South Dakota prefer HRSW 
cultivars to be relatively early in terms of maturity and relatively short in 
stature. Therefore, the SDSU-HRSW breeding program usually favors 
genotype selections as depicted on Figure 1 (i.e., high values for grain yield, 
test weight, and protein content along with low values for each remaining 
trait). After trait vector reversal, signs of relevant correlation coefficients 
were adjusted to have opposite signs as presented in Table 2. 

In general, the GT biplot analysis (Figure 1) revealed that FHB 
resistance traits were correlated amongst themselves and as a group most 
closely associated with test weight and then perhaps AUDPC. Table 2 
revealed that was mostly the case, though DIS was not significantly 
correlated with neither DON nor AUDPC as might have been expected 
from vector placement on Figure 1. Figure 1 and Table 2 also showed that 
grain yield was significantly positively correlated with AUDPC, though 
uncorrelated with the FHB resistance traits and test weight. Placement of 
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the grain yield vector on Figure 1 hinted that it was significantly and 
negatively correlated with heading date, protein content and plant height 
and Table 2 revealed that to be the case. Finally, the only trait significantly 
negatively correlated with protein content was grain yield, and none of 
the disease resistance traits were correlated with protein content or plant 
height (Table 2). 

Generalities of this GT biplot analysis suggest that going forward with 
high-yielding materials from this genotype collection would almost 
certainly result in choosing those with higher than average heading date, 
lower than average protein content, and taller than average plant height. 
Interestingly, high yielding genotypes tended to have lower AUDPC levels. 
This may have been an artifact of previous selection cycles where 
genotypes with some resistance to BLS outperformed those with more 
susceptibility and were therefore brought to the AYT stage of development. 
Lastly, choosing high yielding genotypes would not necessarily influence 
test weight or FHB resistance traits. 

Difficulties underlying genotype selection based on GT biplot analysis 
would be lessened in the presence of either no adverse trait 
interrelationships, (negative correlations) or neutral interrelationships, 
(no correlations) but this is not usually the situation faced by breeders. 
Hence, the task of genotype selection is not easily accommodated through 
GT analysis. 

Genotype by Yield Trait Analysis of 2017–2018 AYT 

Negative trait correlations that hinder genotype selections with GT 
biplot analysis are considerably reduced in GYT biplot analysis because a 
great majority of yield-trait combinations are positively correlated (Table 
4). This feature of GYT analysis alone allows for creation of a useful ATA. 
With GYT analysis, selections are largely made based on superiority index 
values which correspond to ATA placement. The ATA is a virtual 
representation of the average yield-trait combination. Under these 
circumstances, negative yield-trait interrelationships would only be 
troublesome when compared against the ATA.  

Selections from this genotype collection based on either superiority 
index values (Table 3) or ATA placement (Figure 2) would first include 
SD4625, Prevail, LCS-Trigger, SD4708, Forefront, SD4539, and so on. These 
genotypes produced the most grain in conjunction with possessing the 
highest values for other traits. Among these genotypes, LCS-Trigger and 
SD4708 were most distinct in terms of projections onto the double-
arrowed line of Figure 2, while others had intermediate projections. These 
differences were indicative of strong and weak versus well-rounded 
performance levels. LCS-Trigger was included in the AYT as a high-yielding 
check and was known for its high BLS resistance, low grain protein content, 
and late maturity prior to analysis. Experimental genotypes with trait 
profiles similar to LCS-Trigger would likely have been discarded at an 
early point in the evaluation process, primarily because of low grain 
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protein content, but also it was too late for most HRSW growers in South 
Dakota (reflected by heading date). Ultimately, such decisions are based 
on breeder objectives as well as his or her understanding of market 
requirements. Its presence within this collection does illustrate the 
importance of careful scrutinization of genotypes with large projections 
onto the double-arrowed line. For example, yield-trait vectors for 
Y*AUDPC-1, Y*GPC, Y*HEIGHT-1, and Y*TW were all in close proximity to 
one another (Figure 3) and most correlations were significant among the 
group (Table 4). Standardized yield-trait combination values for LCS-
Trigger were highest for each of these combinations except Y*GPC, for 
which it was eighth highest. Likewise, its standardized yield-trait 
combination value was lowest of all genotypes for Y*DAYS-1, which was 
far removed from this group of yield-trait vectors (Figure 3). Placement of 
LCS-Trigger on Figures 2 and 3 was appropriate, though in the way that 
grain yield can contribute to success of a HRSW cultivar, low grain protein 
can contribute to its failure. Regardless of analysis output, from the 
standpoint of most experienced HRSW breeders, ranking LCS-Trigger as 
eighth highest for its Y*GPC yield-trait combination would seemingly 
exaggerate its true worth given a grain protein content that was lowest of 
all genotypes (Table 1). For similar reasons, Yan and Frégeau-Reid [9] 
suggested that entries be removed via independent culling prior to GYT 
analysis. This would remove those with undesirable performance levels 
for any trait prior to further consideration and thereby, ensure an 
acceptable range from which genotypes may be selected for all traits. 

The choice as to whether independent culling might be carried out 
prior to GYT analysis would also be guided by experience and objectives 
of the breeder. Along with evaluating genotypes for eventual cultivar 
release, HRSW breeders must also choose parents for use in development 
of new segregating populations. Some may suggest that independent 
culling could reduce potential to maximize genetic diversity while 
selecting parents. Alternatively, when cultivar release candidates are 
considered, grower and end-user requirements and expectations may 
require culling to maintain satisfactory levels. In either case, GYT analysis 
is a useful approach to selection because performance for any or all traits 
is observed in the context of productivity (i.e., grain yield) and can be 
readily identified either by numerical examination, viewing the biplot 
image, or both. 

In this instance, and from the standpoint of identifying parents, 
genotypes would be selected by moving leftward on the ATA or by 
choosing those with the highest superiority index values. As described, 
however, a breeder may also wish to carefully scrutinize genotypes with 
long projections onto the double-arrowed line to uncover the cause. Using 
a similar approach among experimental genotypes, those selected for 
further consideration towards potential cultivar release included SD4539, 
SD4625, and SD4708, with SD4625 being the most likely candidate. 
Performance levels for all agronomic and disease resistance yield-trait 
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combinations associated with SD4625 and SD4708 were better than 
average (Table 3). Because SD4539 was nearly tallest among all genotypes 
and had a late heading date (Table 1), its performance with regard to these 
yield-trait combinations were less than average, though the remaining 
yield-trait combinations were also greater than average (Table 3). 

CONCLUSIONS 

This work was carried out to demonstrate use of GYT biplot analysis as 
a means of selecting genotypes for population development and further 
consideration toward eventual cultivar release. Specifically, HRSW 
genotypes with high agronomic performance levels and elevated 
resistance to BLS and FHB were identified. A GYT analysis is an extension 
of GT analysis where grain yield values are first combined with those of 
other traits to generate new yield-trait combinations. Because each yield-
trait combination includes grain yield in its calculation, their correlations 
are generally positive. It is genotype placement with respect to the ATA 
and double-arrowed line on a GYT biplot image that allows for genotype 
selection. Alternatively, or in conjunction with a biplot image, numerical 
values can also be inspected for making selections. 

For demonstration purposes, this work was carried out using data 
gathered over two growing seasons. For the purpose of cultivar release 
recommendation, data from a third or fourth growing season may be 
required. On the other hand, for parental selection, data from a single 
growing season could be sufficient. Regardless of the particular goal, 
similar analyses of different genotype collections would likely result in 
somewhat dissimilar correlations among yield-trait vectors, and genotype 
rankings would also be unique to the collection. Nevertheless, analysis and 
selection methods highlighted in this study would remain unchanged. 
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