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ABSTRACT 

Psychotic disorders are severe, debilitating, and even fatal. The 
development of targeted and effective interventions for psychosis depends 
upon on clear understanding of the timing and nature of disease 
progression to target processes amenable to intervention. Strong evidence 
suggests early and ongoing neuroprogressive changes, but timing and 
inflection points remain unclear and likely differ across cognitive, clinical, 
and brain measures. Additionally, granular evidence across modalities is 
particularly sparse in the “bridging years” between first episode and 
established illness—years that may be especially critical for improving 
outcomes and during which interventions may be maximally effective. 
Our objective is the systematic, multimodal characterization of 
neuroprogression through the early course of illness in a cross-diagnostic 
sample of patients with psychosis. We aim to (1) interrogate 
neurocognition, structural brain measures, and network connectivity at 
multiple assessments over the first eight years of illness to map 
neuroprogressive trajectories, and (2) examine trajectories as predictors 
of clinical and functional outcomes. We will recruit 192 patients with 
psychosis and 36 healthy controls. Assessments will occur at baseline and 
8- and 16-month follow ups using clinical, cognitive, and imaging 
measures. We will employ an accelerated longitudinal design (ALD), which 
permits ascertainment of data across a longer timeframe and at more 
frequent intervals than would be possible in a single cohort longitudinal 
study. Results from this study are expected to hasten identification of 
actionable treatment targets that are closely associated with clinical 
outcomes, and identify subgroups who share common neuroprogressive 
trajectories toward the development of individualized treatments.  
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INTRODUCTION 

Psychotic disorders, including schizophrenia (SZ), schizoaffective 
disorder (SZA), and bipolar disorder with psychosis (BDP) are severe, 
debilitating, and even fatal [1] and are a leading cause of disability world-
wide [2]. Unfortunately, a majority of patients with psychosis experience 
functional impairments, even after symptom remission [3,4], 
underscoring further the need for effective, targeted treatments to 
improve outcomes. The development and implementation of targeted and 
effective treatments for psychosis is critically dependent on a clear 
understanding of the timing and nature of disease progression in order to 
target processes amenable to intervention.  

Evidence of early and ongoing disease-related changes in brain and 
neurocognitive measures in psychosis, often referred to as 
“neuroprogression,” including cognitive dysfunction, gray matter 
reduction and ventricular enlargement, and regional structural and 
connectivity alterations, have been described using multiple modalities 
including neurocognitive testing, PET, CT, and fMRI imaging techniques, 
and post-mortem brain studies (Table 1) [5–93]. However, these studies 
rely mainly on cross-sectional data comparing groups at particular illness 
stages (e.g., high risk, first episode, established) to healthy controls or to 
each other. Existing longitudinal studies typically involve only two 
measurement points, or repeated assessment years apart, thereby limiting 
our understanding of the actual trajectories and key inflection points of 
these disease markers [94]. Thus, while it is evident that significant 
progressive brain changes occur during the years following an initial 
episode, the timing and course of progression across domains remains 
unclear. This knowledge gap limits our ability to develop interventions 
that capitalize on plasticity in key systems during this critical and dynamic 
period of illness, and hinders the development of targeted treatments 
when they may be most effective, potentially preventing further decline 
and chronic loss of functioning.  

Early Psychosis: A Critical Period 

The years after illness onset represent a critical period where early 
intervention strategies may be most effective, before irreversible brain 
alterations take place. Effective treatment after a first episode of psychosis 
(FEP) not only improves functioning but may actually alter illness 
trajectories placing patients on a path toward recovery [95]. Disease 
trajectories appear to crystalize in the years following an initial episode of 
illness, making this a critical period for intervention after which 
effectiveness may be greatly reduced [96,97]. While much is known about 
neuroprogressive changes in FEP and established illness, less is known 
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about the course and timing of these changes in the “bridging years” 
between illness stages. The National Advisory Mental Health Council’s 
Workgroup Report recommended that in the identification of 
pathophysiological processes that contribute to symptoms or syndromes 
“[p]articular attention should be devoted to discovering the sensitive and 
critical periods when neuroplasticity in specific circuits is greatest and 
maximally responsive to intervention” [98]. This requires careful 
phenotyping of neuroprogression throughout the early course of illness 
and development of predictive models.  

Neuroprogression in Early Psychosis 

Abnormalities of gray and white matter volume, network connectivity, 
and cognition are well-described in patients with established psychosis, 
and longitudinal research suggests that neuroprogression may continue 
well into chronicity in some patients [65,67,99]. However, 
neuroprogressive changes may begin much earlier in the illness course, 
some even prior to illness onset. Examination of cognition, gray matter, 
white matter, and connectivity at various stages of illness suggest that (1) 
measurable alterations exist in each of these domains and (2) 
abnormalities do not progress uniformly across stages of illness (Table 1). 
For instance, cognitive abnormalities appear to be present prior to illness 
onset in patients with SZ, becoming more widespread by the first episode 
with profiles qualitatively and perhaps quantitatively similar to chronicity 
in both BP and SZ [26]. In contrast, while gray matter (GM) and white 
matter (WM) reductions are reported in multiple frontal, temporal, and 
parietal regions by the first episode, and these markers appear to become 
more widespread and pronounced compared to controls into chronicity. 
Regionally, some brain volume abnormalities appear to be present in first 
episode at the magnitude seen in chronicity (e.g., hippocampal volume), 
whereas some structures (e.g., amygdala) that show significant 
abnormalities in established psychosis show no evidence of abnormalities 
in high risk [59,100]. Thus, neuroprogression is detectable early in the 
course of illness; however, neuroprogressive changes across modalities do 
not occur uniformly.  

Neuroprogression and Illness Course 

Neuroprogressive changes are related to disease course. Cognitive 
deficits are predictive of functional disability [3,24], and progressive gray 
matter loss and increased cerebrospinal fluid volumes are associated with 
symptom severity, clinical course, and poorer functional outcomes 
[48,65,101–103]. Associations amongst cognitive and brain measures 
suggest complex dynamics amongst these domains, and with illness course 
and functional outcomes [30,58,64,104–106]. For instance, in a recent study 
functionally connected brain regions “thinned together” in networks 
related to cognition, showing a dynamic interplay amongst cognitive, 
structural, and connectivity changes [107]. 
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Table 1. Neuroprogressive Alterations across Illness Stages. 

Domain High Risk First Episode Early Course Chronicity 

Cognition SZ- Attenuated or selective deficits 

relative to chronic patients [5–8] 

BD– no evidence of premorbid 

deficits; relatives show verbal 

memory and executive function 

deficits [9–14] 

Cognitive impairment in SZ and BD 

[9,11,15–19] 

Some reports of widespread 

impairment, others of more selective 

impairments [20] 

Mixed findings: some estimate no 

additional decline during the early 

course [21–23]; some show 

continued decline [24,25], and some 

show improvement in some areas 

[23] 

Widespread deficits: BD- ~1 SD below 

the mean [26–28]; SZ- ~2 SD below the 

mean [3,11,29–31] 

May be associated with relapse or 

symptom severity [25,32,33] but 

findings mixed [22,26] 

Structural GM reductions in middle frontal, 

prefrontal, superior temporal, 

ACC, thalamus, hippocampus, 

parahippocampus [5,34,35] 

Longitudinal: volume reductions, 

thinning, SA contraction in whole 

brain, frontal, superior temporal, 

fusiform and insula, ACC, 

precuneus, parahippocampus, 

ventricular enlargement [36–43] 

Converters vs Non: reduced insula, 

ACC, callosum, temporal lobe; 

increased gyrification [5,40,41,44–

47] 

Reductions in whole brain, superior 

temporal, medial frontal, prefrontal 

and ACC cortices, cerebellum, insula, 

amygdala, caudate, and ventricular 

enlargement [5,34,35,48–58] 

Hippocampal reductions may be 

comparable to chronic patients 

[34,52,59–61] 

Longitudinal: Progressive reductions 

in cortical SA, whole brain, frontal, 

temporal, parietal, limbic regions 

over short time (~2 years) [62] 

Frontal, temporal and parietal GM, 

thalamic volume loss [62,63], most 

pronounced in the first 2 years after 

baseline [62] 

Reduced volume and thickness in 

multiple regions, which was 

associated with age [64] 

Associated with cognitive 

impairment but only weakly with 

clinical measures [62] 

Significant, widespread GM reductions, 

including whole brain volume, medial 

and superior temporal, inferior 

parietal, frontal, occipital, ACC, 

hippocampus, parahippocampus, 

amygdala, insula, thalamus, and 

cerebellum and ventricular 

enlargement [34,45,48,49,58–60,65–75] 

Longitudinal: progressive volume loss 

into chronicity; greatest annual 

reduction in superior temporal regions 

[67] 
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Table 1. Cont. 

Domain High Risk First Episode Early Course Chronicity 

Connectivity Reduced in salience, control, 

auditory and motor networks 

[76,77] 

Mixed findings:  

Reduced in frontal lobes [78]; 

abnormalities in DMN and Control 

Networks [78–80]  

No difference from HC [81]  

Improved over 1 year with clinical 

improvement [82]  

 More pronounced and extended 

frontal, temporal and sensorimotor 

abnormalities [78,81]  

BD and SZ show similar within 

network reductions in DMN, Control 

and Visual networks [83] 

White Matter Mixed: increased in regions of the 

frontal lobes; decreased in medial 

temporal and superior parietal, 

corpus callosum [51,84,85]  

Longitudinal: reduced in fronto-

occipatal fasiculus and cerebellar-

thalamic regions during transition 

[85,86]  

Reduced FA in corpus callosum, 

internal capsule, external capsule, 

fornix, superior, temporal, inferior 

fronto-occipital fasciculus, cingulum, 

uncinate fasciculus; widespread 

increased diffusivity [87–89] 

Abnormalities in thalamo-cortical 

WM connectivity [90]  

Frontal and temporal WM volume 

reductions [62] 

WM reductions, which were 

associated with age [64,91]  

Widespread prefrontal and frontal, 

temporal, internal capsule WM 

reductions [87,91,92] 

BD and SZ show abnormalities 

unrelated to age or DOI) [93] 

SZ: Schizophrenia; BD: Bipolar Disorder; SD: standard deviation; GM: gray matter; ACC: anterior cingulate cortex; SA: surface area; DMN: Default mode network; HC: healthy 

control; WM: white matter; DOI: duration of illness.  
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Together, findings suggest that neuroprogressive changes in 
the years following psychosis onset occur rapidly in many areas 
during an important neurodevelopmental window [94], with 
continued progression throughout the early and mid years. 
However, the current state of the literature is insufficient to 
carefully characterize neuroprogressive trajectories at key 
inflection points [29] and throughout the “bridging” years 
between onset and established illness—years that are critical for 
targeted intervention—for several reasons. First, studies of high 
risk participants often have very low rates of conversion to 
psychosis resulting in possible “dilution effects” [94,108,109]. 
Second, most longitudinal studies include only two assessment 
points forcing the assumption of linearity, and those with more 
assessments are typically years apart making it difficult to 
pinpoint inflection points in primary outcomes [94]. It has been 
suggested that repeated assessments (>2) at relatively short (i.e., 
at most 1 year apart) intervals are needed to characterize the 
longitudinal trajectories in each of these neuroprogressive 
domains [94,110]. Other challenges include considerable 
methodological variation across studies (e.g., definition of key 
grouping characteristics (e.g., DOI in first episode studies); inter-
scan interval; analysis approach). Additionally, as can been seen 
in Table 1, relatively few studies focus explicitly on the years 
between onset and chronicity, despite the critical nature of the 
early course of illness in terms of prognosis and intervention.  

Heterogeneity in Cognition and Neurobiology 

Heterogeneity of premorbid adjustment, illness course, and 
outcomes is the rule rather than the exception in psychotic 
disorders, (e.g., [62]), and identifiable subsamples may differ in 
neuroprogressive degree and trajectory (e.g., [111]). Recent 
reports suggest that abnormalities in brain structure and 
connectivity are associated with cognitive subtypes in psychosis 
[112–114]. A recent study found that baseline neurocognitive 
functioning predicted gray matter reductions in multiple brain 
regions two years later [115], suggesting that baseline profiles 
may predict neuroprogressive course. While heterogeneity can 
interfere with our ability to identify associations and timelines at 
the group level, it may be possible to leverage this heterogeneity 
to identify subgroups that share similar behavioral and 
neurobiological presentation and course toward more 
individualized prediction and treatment implementation. 
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Goals and Hypotheses 

Evidence strongly indicates that neuroprogressive changes 
occur across brain and cognitive measures in patients with 
psychosis at the time of first episode and throughout the early 
course of illness. Nonetheless, no studies to date have undertaken 
the systematic characterization of neuroprogression throughout 
the early course of illness at a granular level using multimodal 
assessments in a transdiagnostic sample. Thus, our objective with 
this project is the systematic, multimodal characterization of 
neuroprogression through the early years of illness in a cross-
diagnostic sample of patients with psychosis. We hypothesize that 
(1) by interrogating neurocognition, structural brain measures, 
and network connectivity at multiple assessments across the first 
eight years of illness we will identify clear neuroprogressive 
trajectories along our primary outcome variables, and (2) 
neuroprogressive trajectories will be predictive of clinical and 
functional outcomes. To accomplish this objective within the 
project timeline, we will use an accelerated longitudinal design 
(ALD, described below) modeling multiple neuroprogressive 
markers by duration of illness, and in association with key clinical 
and functional measures. A central aspect of this project is that it 
builds upon the rich neuroimaging, cognitive, and clinical data 
being collected by the Human Connectome Project in Early 
Psychosis (HCP-EP; PI: Dr. Martha Shenton). Data collection for 
this longitudinal study will occur across the Boston HCP-EP sites, 
and it is estimated that approximately 75% of baseline data for 
the present project will be drawn from existing data collected in 
the context of the HCP-EP.  

MATERIALS AND METHODS 

Participants 

192 patients with DSM-V non-affective (schizophrenia, 
schizophreniform, schizoaffective, psychosis NOS, delusional 
disorder, brief psychotic disorder) or affective (major depression 
with psychosis or bipolar disorder with psychosis) psychosis as 
determined by SCID-5-RV for DSM-V-RV interview [116] will be 
enrolled. As noted above, it is expected that approximately 75% 
of these subjects will have participated previously in the HCP-EP. 
Patients will be between the ages 18–35 at enrollment, and 
between the ages of 17 and 30 at the time of their first episode. 
Duration of illness will be determined via the SCID interview, 
together with all available collateral data from medical records, 
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treatment providers, and family members. Subjects must have 
capacity to provide informed consent. Exclusion criteria include 
MRI contraindication, IQ less than 70 based on medical history or 
WASI-II [117], DSM-V diagnosis of substance-induced psychosis or 
psychotic disorder due to medical condition [116] and known 
brain damage. We will also recruit 36 control participants. 
Exclusion criteria for control participants include history of DSM-
V diagnosis or psychiatric treatment, and all other exclusion 
criteria noted above. All procedures have been approved by the 
Partners Healthcare Human Research Committee/IRB, and 
comply with the regulations set forth by the Declaration of 
Helsinki.  

Materials  

In order to capitalize on existing data and maximize 
comparability between data sets, we will use identical materials 
and procedures to those currently implemented by the HCP-EP. 
Participants will be reassessed at the same site as their original 
assessment, including MRI scans.  

Behavioral measures 

Behavioral measures include the NIH Cognition Toolbox [118], 
psychosis-relevant HCP Lifespan measures, and additional 
measures for early psychosis including: (1) Hollingshead Two-
Factor scale [119], measure of parental SES; (2) SCID-5-RV in 
conjunction with medical records and patient/family clinical 
interviews to confirm diagnosis; (3) The Positive and Negative 
Syndrome Scale (PANSS) [120]; (4) The Clinical Assessment 
Interview for Negative Symptoms (CAINS) [121]; (5) The Young 
Mania Rating Scale (YMRS) [122]; (6) The Montgomery-Asberg 
Depression Rating Scale (MADRS) [123]; (7) The MIRECC Global 
Assessment of Functioning (GAF) [124]; (8) HCP-EP Lifetime 
Medication Record, which assesses past and current medication 
use; 9) WASI-II Vocabulary and Matrix Reasoning to estimate IQ, 
and 10) the Seidman Auditory Continuous Performance Test (CPT 
[125,126]). 

Medications represent an important covariate in the study of 
progressive changes in brain and behavior. We will collect 
detailed information about mediation use at each assessment, 
and account for medication effects using analytic models of 
antipsychotic, Lithium, and total medication load both as 
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moderators and confounders in order to examine the potential 
role of medications in neuroprogression. 

Neuroimaging: MR data acquisition protocol 

Imaging data will be collected on two Siemens MAGNETOM 
Prisma 3T scanners, one at McLean and one at Brigham and 
Women’s Hospital. Both use a 32-channel head coil and are 
actively collecting HCP-EP data using the same sequence 
employed here. This protocol is similar to the original HCP 
Lifespan protocol [127], but without the fMRI task, as many 
subjects with psychotic disorders may not easily tolerate lengthy 
MR sessions. Total scan time is just over one hour. The scan 
sequences include: (1) Localizer and Auto Align Scout; (2) 
Structural T1w (MPRAGE) (0.8 mm isotropic; T1 1000 ms; TR 
2400 ms; 208 slices) and T2w (SPACE) (0.8 mm isotropic; TR 3200 
ms; 208 slices) (3) Resting state fMRI (rfMRI) of 2mm isotropic; 
multiband (MB) acceleration × 8; TR 720 ms; acquired twice: once 
with AP and once with PA phase encoding; 4) Diffusion MRI 
(dMRI) 1.5 mm isotropic; TR: 3230 ms; TE: 89.20 m; flip angle 78°; 
MB acceleration × 4, 92 directions in each shell (b = 1500 and 3000) 
acquired twice: once with AP and once with PA phase encoding. 
Field maps will be acquired to correct for intensity and geometric 
distortions.  

Procedures 

This project employs an accelerated longitudinal design (ALD) 
in order to cover the desired timeframe within the constraints of 
the project. ALDs follow enrollment cohorts longitudinally and 
thus model both within subject longitudinal and between subject 
group effects. While most ALDs use age to define cohorts, we will 
use duration of illness (DOI), which will allow us to estimate DOI-
related trends in our primary outcomes. The timing of repeated 
assessments will be calibrated to each individual’s DOI resulting 
in measures that span the range from 0 to 88 months after illness 
onset. We selected a “balanced ALD”, meaning equally spaced 
measurements across the study, the same number of 
measurements per cohort, and equal overlap between successive 
cohorts (in this case, no overlap; see Table 2). 
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Table 2. Assessment Schedule by Cohort. 

Months Since Onset 0 8 16 24  
(2 year) 

32 40 48  
(4 year) 

56 64 72  
(6 year) 

80 88 

Cohort 1 
(0 years) 

× × ×          

Cohort 2 
(2 years) 

   × × ×       

Cohort 3 
(4 years) 

      × × ×    

Cohort 4 
(6 years) 

         × × × 

Assessment schedule by time (months since onset) and duration of illness-defined cohort. 

Data collection schedule 

Assessments will be conducted at baseline, 8-months and 16-
months to fully cover the early course of illness (Table 2) at 
equally-spaced assessments, minimizing overlap of assessment 
points amongst cohorts (desirable in an ALD [128]). Baseline 
assessments include MRI scan, clinical and diagnostic interviews, 
and neuropsychological assessments. Follow up at 8- and 16-
months will consist of the MRI scan, clinical and 
neuropsychological assessments. The follow up interval was 
selected because scans at least annually have been recommended 
for assessment of changes that occur relatively rapidly (e.g., 
[20,94]) as may be the case after psychosis onset [62], and 
coverage of the time between onset and established illness is 
needed to fill a critical knowledge gap. Thus, in the context of an 
ALD, assessments at 8-month intervals permits frequent 
assessments at multiple assessment points—important for 
assessment of trajectories without forcing an assumption of 
linearity [20,94]—while covering nearly 8 years after illness 
onset. Control participants will also be assessed three times at 
baseline, 8- and 16-months.  

Behavioral assessments 

Follow-up assessments involve approximately 3–3.5 h of 
behavioral, clinical, cognitive testing. Baseline assessments will 
also include a clinical diagnostic interview that will add 
approximately 1.5–2 h. Total assessment time for baseline 
procedures is expected to take approximately 4.5–5 h over two or 
more days, within days of the imaging. Participants are provided 
lunch and/or snacks during the assessment, as appropriate. 
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Reliability was established on all Toolbox measures prior to the 
start of enrollment. Reliability and consensus diagnosis is ongoing 
for all diagnostic interview, conducted on a monthly basis with all 
diagnostic team staff across sites.  

MRI scans 

Subjects complete MRI safety screening prior to scanning. 
Procedures are described to subjects and they are helped into the 
scanner by study staff and an MRI tech at the scanning site. 
Subjects are instructed to remain still during scanning and 
deformable foam cushioning is used to stabilize the head. Real 
time image reconstruction and processing are used for quality 
assurance at the time of scanning. Total scan time is just over 1 h; 
with MRI safety checks total time at the scan site is approximately 
1.5 h.  

All MRI data processing and storage are completed via a 
central database system at Brigham and Women’s hospital, which 
has been customized to host the project data and to manage daily 
operations and QC procedures and synchronized to receive data 
directly from McLean. This upload tool automatically strips all 
PHI prior to upload, and de-identified data from both sites with 
QC are stored in this database system. Automated verification of 
scan acquisition parameters at the time of the scan are followed 
by a manual review, and a semi-automated QC procedure 
developed to detect signal drops is run for each scan. Because two 
different scanning sites will acquire data, special considerations 
have been taken to ensure that the data quality is homogeneous 
across sites. Harmonization procedures include Siemens specific 
QA tools, phantom measurements (fBIRN and NIST phantoms), 
and traveling human subjects. Scanner reliability was assessed 
both between scanners and using test-retest assessments within 
scanners. Intraclass correlations (ICC) were computed on 
Freesurfer outputs including total GM volume, subcortical GM 
volume, cortical WM volume, brain segmentation volume, and 
total ICV, and regionally specific measures based on our primary 
outcomes. We found ICCs of 0.98–0.99 for broad measures, and 
0.90–0.99 for regional measures. 

Planned analyses 

Our primary aim is to map neuroprogression across the first 8 
years of illness. We will fit latent growth curve models to the 
repeated measures of our cognitive and MRI measures on the full 
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sample using techniques that permit the functional form of the 
trajectories to be determined by the data. Each model will include 
initial DOI as a covariate to separate between-subject differences 
from within-subject changes as a function of current DOI at each 
assessment point [129,130]; the model will also include age at 
assessment to evaluate the effects of natural aging, which will also 
be estimated from the control participant data, as well as 
demographic and clinical covariates. By including the between-
subjects and within-subjects separately in the models we are able 
to determine the extent to which trajectories are more strongly 
associated with longitudinal change over DOI, or cohort effects. 
These methods allow examination of inflection points in primary 
outcome trajectories, and peaks and valleys by DOI. We will also 
examine diagnostic differences in trajectories. 

To evaluate the predictive utility of neuroprogressive change 
on clinical and community functioning, we will conduct a second 
set of latent growth curve analyses on clinical and functional 
measures. We will then build predictive models of our clinical 
and functional outcomes based on within-subject changes in 
neuroprogressive markers. We will also explore the possibility 
that subgroups of subjects demonstrate distinct neuroprogressive 
trajectories, and differences in clinical and functional outcomes 
based on these groups using growth mixture models (GMMs). 
GMMs, an extension of multiple-group growth curve models in 
which the grouping variable is not specified a priori, can be used 
to identify subgroups within the data and describe differences in 
longitudinal trajectories between subsamples. Finally, we will 
conduct explicit tests of fully dimensional models and combined 
dimensional and categorical models based on the latent class 
trajectories groupings. 

DISCUSSION 

Determining the timing and course of neuroprogressive 
changes over the early course of psychosis is essential to the 
development and implementation of targeted, individualized 
treatment during a critical time period in which treatments may 
be maximally effective and the potential for preventing further 
decline and chronic loss of functioning is at its greatest. Results 
from this study will (1) hasten the identification of actionable 
treatment targets that are closely associated with clinical 
outcomes in order to capitalize on islands of preserved plasticity 
and maximize their clinical utility, and (2) provide guidance for 
individualized treatment.  
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This project includes several key innovations. First, these data 
will be the first to characterize multiple markers of 
neuroprogression throughout the early course of psychosis, 
including inflection points, stabilization points, and associations 
with clinical course, in a transdiagnostic sample and within a 
single study paradigm covering the critical years between first 
episode and established illness. These findings will not only 
elucidate neuroprogressive processes that are as yet unknown, 
but will hasten our ability to design treatments in the early course 
of illness that target actionable mechanisms, potentially 
preventing further decline and chronic loss of functioning. For 
instance, if neurocognitive decline predates and predicts 
structural brain degeneration in associated regions, early 
treatments targeting cognition for patients with cognitive deficits 
may improve cognition and halt progression of gray matter loss. 
Indeed, Eack et al. [131] found that cognitive remediation both 
improved cognition and slowed gray matter loss in patients with 
SZ. Additionally, we will examine heterogeneity of 
neuroprogressive trajectories and their associations with clinical 
and functional course. The use of an accelerated longitudinal 
design (ALD) will allow ascertainment of data across a longer 
timeframe than would be possible in a single cohort longitudinal 
study, and at more frequent intervals than may be feasible in the 
same subjects over eight years [128]. To our knowledge this is the 
first study to employ an ALD based on illness duration in early 
psychosis. Of course, the use of an ALD rather than a fully 
longitudinal design in a single cohort introduces the possibility of 
cohort effects, but we feel that the benefits outweigh the costs by 
permitting coverage of the full 8 years of interest while reducing 
the likelihood of large-scale attrition over such a long follow up 
thereby reducing power especially in the later years, frequent 
enough inter-assessment intervals to capture inflection and 
stabilization points in a more fine-grained way, and the potential 
to fit non-linear models by including 3 assessments per 
participant. Additionally, we are in a unique position to leverage 
a major ongoing study of patients in early psychosis to achieve 
our aims, capitalizing on both the innovations of the HCP-EP and 
the timing of the study. The HCP-EP is currently enrolling, 
allowing us to incorporate longitudinal data to the project while 
data collection is ongoing, and existing data will serve as baseline 
assessments for a large proportion of the sample allowing us to 
increase overall enrollment and follow-up and thereby increase 
power adequately to perform the analyses described above.  
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