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ABSTRACT 

In psychiatry, polygenic risk scores (PRSs) have recently been exploited 
to uncover the shared genetic components in distinct psychiatric 
disorders. Summary data of large-scale discovery genome-wide 
association studies (GWASs) on traits such as schizophrenia (SZ) are 
available. In addition, clinical deep phenotyping includes several 
correlated phenotypes for psychosocial functioning such as the Positive 
and Negative Syndrome Scale (PANSS) and the Global Assessment of 
Functioning (GAF). PANSS evaluates acute symptom severity, thus 
adjusting for this effect when measuring overall assessment and 
progression of patients with the GAF. A far-reaching understanding of 
the properties of PRS in such phenotypes is critical to interpreting such 
analyses, especially when the intermediate phenotype limits sample size.  

We conducted a simulation study to investigate the performance of PRS 
in the correlated target phenotypes using sample sizes n = 200, 500, and 
1000 (100 replicates) in terms of explained variance in the simulated 
target phenotypes. We investigated performance of SZ-PRS in the 
PsyCourse study involving 653 patients (psychotic n = 387, affective  
n = 266), in which SZ-PRS was derived from the results of a large GWAS of 
schizophrenia by the Psychiatric Genomics Consortium.  

Our simulation results reveal that decreasing correlation between target 
phenotypes indicates a definable decrease in shared genetic burden with 
the discovery phenotype. However, with a small sample size, there is 
already a loss in retrieved R2 with an identical generation model. Our 
PsyCourse results portrayed that for all patients and for psychotic 
subgroup, SZ-PRS explained 1% R2 for GAF. 

https://jpbs.hapres.com/
https://creativecommons.org/licenses/by/4.0/
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INTRODUCTION 

Large-scale genome-wide association studies (GWAS) for a variety of 
polygenic phenotypes have greatly increased the amount of information 
available, e.g., by providing summary statistics including effect sizes and 
p-values for single nucleotide polymorphisms (SNPs) with respect to the 
association with those phenotypes. This has enabled researchers to 
develop numerous statistical methods such as the polygenic risk score 
(PRS) approach to exploit the pleiotropic and polygenic properties of 
complex traits. The PRS aggregates information from a large number of 
potentially causal SNPs that have fairly small effect sizes. It is commonly 
used to model and predict pleiotropic traits and also to identify 
individuals at risk. PRS may be defined as the sum of weighted counts of 
risk alleles, where the weights are recruited from the effect sizes of the 
corresponding large-scale GWAS results. 

PRS can be regarded as the underlying genetic liability for a 
phenotype, usually following a normal distribution [1]. Genetic liabilities 
of various complex phenotypes and disorders such as height [2–4] and 
schizophrenia [5–7] have been estimated by taking into account 
hundreds or thousands of genetic loci in this additive polygenic model. 
PRSs based on the GWAS results of one phenotype in a large-scale sample 
(discovery) can also be used to quantify the degree of variance explained 
by the PRS in another, possibly much smaller sample with the exact same 
or sufficiently correlated phenotype (target). The PRS for the phenotype 
schizophrenia (SZ), denoted as SZ-PRS, has been used for example to 
unveil the polygenetic model behind several psychiatric phenotypes such 
as first episode psychosis (FEP) [8–10] and bipolar disorder (BPD) [11]. 

Substantial evidence from well-powered GWAS revealed a 
considerable shared genetic etiology among distinct psychotic 
phenotypes such as SZ and BPD [11]. However, it is well known that 
psychotic disorders are highly heterogeneous in their symptoms and 
genetic architecture [8–10]. Owing to the presence of considerable 
overlap in the dimensions and severity of symptoms, numerous clinical 
scales have been developed that altogether allow us to assess the 
functioning of patients with various distinct psychiatric phenotypes. 
Among a number of standard testing scales and procedures in psychiatry, 
Global Assessment of Functioning (GAF) is one of the well-known 
standard rating scales for all psychiatric phenotypes. The GAF score 
varies from 1 to 100, higher scores reflecting an increase in mental 
health and capability of coping and vice versa [12]. The Positive and 
Negative Syndrome Scale (PANSS) is used to measure symptom severity 
in psychiatric patients, and is considered as a measure of acute 
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symptoms. It has three subscales that quantify positive, negative, and 
global psychopathology symptoms on 30 individual symptoms [13]. GAF 
is often adjusted by PANSS, so that it is less influenced by acute 
symptoms. The correlation among different symptom dimension scores 
such as GAF and PANSS varies with the specific clinical diagnosis [8,9]. 
Recently, SZ-PRS has been exploited to explain the shared polygenic basis 
of GAF and PANSS for distinct diagnostic groups in FEP patients with 
schizophrenia [8,9]. However, the prediction of these distinct genetic 
components in phenotypes with respect to symptoms remains a challenge 
and the degree of genetic correlation between psychiatric phenotypes and 
the severity of symptoms is yet not completely understood. 

In the current study, our first goal is to elucidate the performance of 
PRS in a simulation study of correlated quantitative phenotypes. Previous 
simulation studies estimated the performance of PRS across various 
heritabilities and shared genetic correlation scenarios assuming that all 
markers are independent [1,11]. Here we investigated the behavior of 
PRS by taking the linkage disequilibrium (LD) structure of the population 
into account. We examined the properties of PRS for correlated 
quantitative phenotypes with complete overlap of causal genetic markers 
with a focus on the distribution of explained variance (R2) and optimal  
p-value threshold (p0) in the replications. Our second goal was to 
interpret our simulation results in view of the SZ-PRS applied to 
phenotypes in the PsyCourse dataset (version 2.0.1) [14] including 653 
psychotic and affective individuals and to compare our findings with 
previous studies [8,9]. We analyzed the symptoms and severity in terms 
of the association between GAF and SZ-PRS. We then stratified the data 
by diagnosis, i.e., into psychotic and affective individuals, in order to 
examine whether potential effects of symptom severity in the GAF are 
restricted to diagnostic groups or are a more general phenomenon.  

MATERIALS AND METHODS 

Polygenic Risk Score Approach  

PRS exploits shared genetic etiology between a discovery and a target 
trait. The discovery and target trait may be the same where the shared 
genetic etiology is 100% or any two distinct phenotypes with a varying 
degree of shared genetic correlation between them. We investigated the 
performance of PRS applied to samples of varying sizes of the target trait 
in both a simulation study as well as on real-world psychosis data. We 
considered target traits that are correlated to the discovery trait at 
varying degrees of correlation. Typically, a PRS is constructed as a 
weighted sum of risk/protection allele counts (xi) with weights (βi).  

i ii
PRS xβ=  

The weights are obtained from the single SNP summary statistics 
estimates of a GWAS regression analysis and dosages instead of the risk 
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allele count may also be employed for imputed SNPs for the target 
sample. For a binary discovery trait such as SZ in the Psychiatric 
Genomics Consortium (PGC) study [5,6], the weights are given by the log 
odds ratios (log OR). For a continuous discovery trait, linear regression 
coefficients are used as weights whenever appropriate. 

In the PRS analyses, the first step is to perform a GWAS analysis on a 
discovery sample and subsequently rank SNPs on the basis of their  
p-values when testing the association with the discovery trait. Next, all 
the common SNPs were identified that have been genotyped or imputed 
in both the discovery and the target trait; and in the following we refer 
only to those common SNPs for calculating the PRS. For a given p-value 
threshold pt, the PRSt for an individual of the target sample is constructed 
as described above by including all SNPs with p-values for association 
with the discovery trait smaller than or equal to the given threshold. In 
the target sample, the target trait is then regressed on the PRSt, in 
separate regressions for a dense grid of p-value thresholds pt. For each 
regression, i.e., each threshold pt, the variance explained by PRSt, denoted 
by Rt

2, is estimated. Finally, PRSt = PRS explaining the maximum amount 
of variance (Rt

2
max = R2) and its optimal p-value threshold (p0) are 

determined. In principle, all common SNPs between discovery and target 
trait or a subset could be used in a PRS analysis. The subset could be 
simply those SNPs demonstrating significant GWAS results, such as the 
108 loci identified in the PGC SZ GWAS [5]. However, unless indicated, we 
do not use such a restriction based on significance when calculating the 
PRS. In the global approach, it is recommended to use a subset of SNPs 
yielded by clumping the GWAS results before computing risk scores [15]. 
In theory, clumping refers to a variable selection procedure that 
preferentially retains SNPs with the strongest statistical evidence, i.e., 
lowest p-value, within each LD-block. Thus the number of SNPs and the 
correlation between the SNPs is greatly reduced in the construction of 
the PRS. The value of a PRS at any particular threshold is named the 
genetic burden with respect to the discovery trait, e.g., SZ genetic burden.  

PsyCourse Data 

We obtained imputed genotypes based on original genotyping with 
the Illumina Infinium PsychArray as well as the top ten principal 
components (PCs) of ancestry for n = 771 patients from the PsyCourse 
study [14]. We considered baseline information on symptom severity in 
these patients [14]. PsyCourse is an ongoing multicenter study in 
Germany and Austria that aims to understand the genetic-molecular 
underpinnings of the longitudinal course of the affective-to-psychotic 
continuum (for details see [14]). All patients in the study were classified 
into two broad diagnostic groups, psychotic and affective. Briefly, 
diagnoses of each patient were established using the Diagnostic and 
Statistical Manual of Mental Disorders, Fourth Edition (DSM-IV) criteria. 
The baseline phenotype information included gender, age, and an array 



 
Journal of Psychiatry and Brain Science 5 of 16 
 

J Psychiatry Brain Sci. 2019;4:e190003. https://doi.org/10.20900/jpbs.20190003 

 

of clinical phenotypes reflecting different symptom dimensions. Here, we 
investigated the associations between PRSs and the GAF score. For the 
GAF, we additionally adjusted for the total PANSS score that summarizes 
all PANSS subscales. After excluding missing data, we retained a subset of 
653 patients with baseline information of GAF score, PANSS, age (in 
years), and gender. To perform PRS analyses, we downloaded the single 
SNP summary statistics data set of 102,636 already clumped SNPs, based 
on the discovery sample of 36,989 cases and 113,075 controls from the 
PGC website. We identified all SNPs in common between these PGC data 
and our PsyCourse imputed data. This resulted in 93,471 SNPs to be used 
to investigate the association between SZ-PRS and the target trait in the 
target sample.  

Simulated Data 

Our simulation comprised three main parts: (1) generation of 
genotype data (independent of phenotypes); (2) simulation of phenotypes 
for the discovery and target trait (T1) via an additive heritability model; 
and (3) generation of additional target phenotypes (T2, T3, and T4) which 
are correlated to T1 and thus also to the discovery trait. As the discovery 
sample of the PGC study comprised approx. 34,000 schizophrenia cases 
with European ancestry [5,6], we chose this sample size for the discovery 
trait in our simulations. Sample sizes for the target traits were set as n = 
200, 500, and 1000. We selected these sample sizes in a context that 
phenotyping for the target trait might prove quite challenging. We 
simulated 50,000markers of which nc = 20 are causal markers shared 
between the discovery trait and all target traits.  

Genotype Simulation 

Employing Hapgen 2.0 (http://mathgen.stats.ox.ac.uk/genetics_software/ 
hapgen/hapgen2), we simulated 50,000 markers for 34,000 individuals 
based on the European HapMap reference population of Utah Residents 
with Northern and Western European Ancestry (CEPH-CEU), keeping the 
LD pattern. Hapgen 2.0 required us to assign case-control status; however, 
we simulated a null model in which none of the genotypes carries any 
effect on the case-control status. We then sampled 100 replicates of 
genotypes for the target traits from these 34,000 individuals in samples of 
n = 200, 500, and 1000 with replacement.  

Phenotype Simulation 

We simulated the phenotypic values for the discovery trait and for T1 
under an additive SNP heritability model. In this additive model, the 
phenotype Yi of each individual, i = 1,…,n is modelled as the sum of linear 
effects of the causal SNPs j = 1,…,nc and an error term εi. In the generation 
model, the nc = 20 causal markers explain approximately 80% of the 
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additive SNP heritability h2, while the remaining markers in the panel 
explain less than 1% heritability.  

i i j j i
j

Y Z β ε= +  

Here βj denotes the additive genetic effect of the j-th causal SNPj, Zij is 
the ij-th element of the genotype matrix, standardized for SNP 
frequencies, such that xij denotes the number of reference alleles of the  
j-th causal variant in individual i and fj the corresponding population 
allele frequency.  

( 2 )
2 (1 )

ij j
ij

j j

x fZ
f f

−=
−

 

The error term εi  follows a normal distribution with mean zero, 
where the total variance σ2

ε is controlled by the desired total additive 
heritability of the trait h2. h2 is the sum of the additive heritabilities for 
each individual SNPj, h2

j, determined by allele frequency and effect size 
as follows: h2

j = 2β2
j × fj (1 − fj) .  

2
2

1var( ) ( )(1 )ij j
j
Z hεσ β= ⋅ −  

Employing this model, we generated the values of the discovery 
phenotype for 34,000 individuals of the discovery sample as well as the 
values of the target phenotype T1 for the individuals of the much smaller 
target samples. Additionally, we simulated normally distributed target 
traits T2, T3, and T4 with correlation r = 0.8, 0.6, and 0.4, respectively, with 
T1 and thus with the discovery trait. Here we took into account the 
geometric property that for any two vectors with mean 0 the correlation 
r between them equals the cosine of the angle [16]. 

Statistical Analyses 

PsyCourse data 

Our primary statistical analysis investigated how well the 
schizophrenia-based PRS can explain baseline symptom severity (GAF score) 
for all individuals. Prior to the PRS analyses, we assessed the difference in 
means of both diagnostic groups for GAF, PANSS age, and gender, using  
t-test, Mann-Whitney U Test and chi-squared test as appropriate. 

For each individual in the target sample (n = 653) and for each of the 
93,471 SNPs in common with the PGC data, the sum of dosages for risk 
alleles (0, 1, and 2) was multiplied by the log OR for that particular 
variant estimated by the PGC study [5]. The resulting values were 
summed up in an additive fashion in the order of p-value ranking in the 
PGC study. Thus an individual estimate of the SZ-PRS was obtained at 106 
different p-value thresholds (pt  ≤  5 × 108; pt  ≤  0.0001; pt  ≤  0.001; pt  ≤  
0.01 to pt  ≤  1.00 by increments of 0.01).  
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We performed four regression models to estimate the explained 
variance for GAF. In the first model (M1) we only included age, gender, 
and PCs as the set of potential confounders (SPC). In the second model 
(M2), we added SZ-PRS into M1. It is well known that the symptom scales 
GAF and PANSS are highly correlated [16]. Thus, in the third model (M3) 
we added PANSS to M1 and in the fourth model (M4) we added SZ-PRS to 
M3. We considered GAF a continuous normally distributed variable as an 
approximation to the ordinal scale. We analysed these four models in all 
patients and separately in the psychotic and affective patients to 
elucidate whether potential effects of baseline severity are restricted to 
one of these groups or are a more general phenomenon. M2 and M4 were 
performed separately using each of 106 SZ-PRSs estimated at 106  
p-values; we only report the results for the model obtained at po 

Simulated data 

Owing to the presence of LD between genetic markers in the 
simulated data, we performed LD clumping prior to computing PRS using 
a threshold of r2 = 0.2 for all SNPs within a window of 250 kbp. Clumping 
yielded 7432 SNPs that essentially included causal SNPs (nc = 20). We then 
used the weights from the summary statistics of our discovery trait for the 
clumped SNP set to calculate the PRS in the target trait samples. We used  
p-value thresholds ranging from 0.01 up to 0.5 at increments of 0.01. 

In all sample sizes, we considered the distribution of the “variance of 
the target trait explained by the regression using the PRS”, i.e., R2, and 
optimal p-value thresholds across replicates. We reported the mean, 
standard deviation, and range of R2 across the 100 replicates. We also 
reported the optimal p-value thresholds (p0) of each replicate for the 
correlated traits (T1–T4) as well as the number of markers employed by 
PRS at p0, across replicates. 

All the PRS calculations for the PsyCourse and simulated data were 
computed in PLINK 1.90 (https://www.cog-genomics.org/plink/1.9) and for 
further statistical analyses as well as data handling we used R, version 
3.2.0 (https://www.r-project.org/).  

RESULTS 

PsyCourse Data 

Using the baseline visit information of the PsyCourse data [14], we 
identified n = 653 individuals (57.9% males) who were diagnosed into the 
two broad categories psychotic and affective. There were n = 387 
psychotic patients (8.3% are FEP; 62.3% males) and n = 266 affective 
patients (9.8% FEP, 51.5% males). The more specific diagnoses according 
to DSM-IV criteria within each of these groups were as follows: Of the  
n = 387 psychotic patients 80.1% were SZ patients, 16.5% schizoaffective 
disorder patients, 2.1% schizophreniform disorder patients and 1.3% 
brief psychotic disorder patients. Of the n = 266 affective patients 82.0% 
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patients had bipolar-I disorder and 18.0% patients bipolar-II disorder. 
Table 1 provides an overview of the mean and standard deviation for 
GAF, PANSS, age and gender for all patients and the two main diagnostic 
groups. We additionally computed 95% confidence intervals (95% CI) for 
the difference in means between the diagnostic groups and tested 
whether the means were different. All variables show difference 
between the two diagnostic groups. 

Table 1. Comparison of GAF, PANSS, age, and gender between the two diagnostic groups.  

Diagnostic Group 

Scale 
All (n = 653) Psychotic 

(n = 387) 
Affective 
(n = 266) 

Difference between 
subgroups  

Mean (SD) p-value 95% CI 
GAF 57.5(13.4) 54.5(13.5) 61.9(11.9) 3.6 × 10−13 5.5, 9.4 
PANSS 52.6(19.2) 59.6(20.7) 42.4(10.6) 2.2 × 10−16 −19.6, −14.7 * 
Age 42.8(13.0) 40.4(12.3) 46.2(13.3) 2. 5 × 10−8 3.8,7.8 
Gender(M) 57.8% 62.2% 54.8% 0.007857 1.11, 2.15 

* 95%CI according to normal distribution, but a non-parametric test was used. 

We considered four regression models with GAF as outcome and SZ-
PRS, PANSS, and 5 PCs as input variables for all patients and stratified for 
the two diagnostic groups. As the scree plot revealed no clear cut-off beyond 
including two PCs, we investigated including two up to ten PCs. The fifth PC 
explained more variance in GAF than others. Thus this appears to be the 
optimal choice, as well as yielding the largest increase in R2. 

Table 2 lists the estimated R2 along with the corresponding p-value of 
the model. Note that the optimal p-value threshold value p0 = 0.0001 for 
models M2 and M4 is selected from a series of regression models using the 
SZ-PRS estimates calculated at 106 different p-value thresholds. The 
maximum increase in R2 from M1 to M2 was 0.49% and 0.90% from M3 to 
M4. Note that the latter corresponded to a regression coefficient for PRS 
in M4 of 2.45 (95% CI = (−0.13, 5.03), p-value = 0.063). 

Table 2. Results for estimated R2 and model p-value for the four regression models M1–M4 for all patients 
and stratified by diagnostic group.  

Model All Psychotic Affective
R2 p-value R2 p-value R2 p-value

M1 0.040 3.17 × 10−4 0.052 4.37 × 10−3 0.043 0.011
M2 0.045 1.68 × 10−6 0.063 1.47 × 10−5 0.049 0.115
M3 0.372 1.80 × 10−61 0.350 4.10 × 10−32 0.340 3.75 × 10−20

M4 0.381 2.41 × 10−61 0.360 3.40 × 10−32 0.350 9.12 × 10−20

All p-values are FDR corrected. 
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Simulated Data 

Using the summary statistics obtained from the GWAS on the 
discovery trait, we determined PRSs for the respective target samples of  
n = 200, 500, and 1000 in 100 replicates. For our PRS analyses we reported 
the mean, standard deviation (SD), and range of estimated R2 when 
regressing on T1, T2, T3, and T4, respectively, on PRS at the optimal p-value 
threshold p0 (see Table 3).  

Table 3. Summary of the estimated R2 by PRS in target traits T1–T4 for all sample sizes across 100 replicates. 

R2 n = 200 n = 500 n = 1000 
Mean (SD) Range Mean (SD) Range Mean (SD) Range 

T1 0.32(0.08) 0.13–0.54 0.33(0.07) 0.17–0.47 0.33(0.07) 0.17–0.49 
T2 0.21(0.06) 0.06–0.37 0.21(0.05) 0.09–0.32 0.21(0.04) 0.11–0.33 
T3 0.13(0.04) 0.03–0.28 0.12(0.03) 0.03–0.20 0.12(0.02) 0.06–0.19 
T4 0.05(0.02) 0.006–0.16 0.05(0.02) 0.006–0.10 0.05(0.015) 0.02–0.09 

In all analyzed sample sizes, the average value of R2 estimated by PRS 
for T1 was approximately 32%, where T1 followed exactly the same 
generation model as the discovery trait. For the phenotypes T2, T3, and T4, 
correlated with T1, a decreasing R2 was observed with decreasing 
correlation, for T2 on average 21%, for T3 12%, and for T4 5%, respectively. 
Note also that the average R2 estimates for the optimal PRS model were 
stable in each target trait while SD decreased and the range increased 
with decreasing sample size, as expected.  

Overall, R2 estimated by the PRSs for 100 replicates were 
approximately normally distributed, as expected (data not shown). For 
the final PRSs of all replicates Figure 1 displays boxplots of R2 (Figure 1a), 
of the optimal p-value thresholds (Figure 1b) and of the total number of 
SNPs included in these final PRSs (Figure 1c). While median R2 and 
interquartile boxes are quite comparable between sample sizes, Figure 1a 
reveals that for the small sample sizes some outliers at high R2 values can 
be observed. The degree of variance explained declines dramatically 
with decreasing correlation with the discovery trait. In Figure 1b, no 
outliers are seen in the distribution of optimal p-value thresholds. 
However, the interquartile boxes are very large, showing how highly 
variable the selected threshold is. As the sample size decreases, the 
optimal p-value threshold decreases. It decreases dramatically from  
n = 500 to n = 200 for T1, and less dramatically for traits correlating to a 
lesser extent with the discovery trait. The average number of SNPs 
included into the final PRS, i.e., the one at p0, ranged from 2400 to 6400 
across all traits. However, a number at the high end of these ranges is 
much more likely for T1 and several outliers at the low end are displayed 
at all sample sizes. The drop in the interquartile box for T4 at the lowest 
sample size is remarkable.  
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Figure 1. (a) presents the R2 plot, (b) displays the optimal p-value threshold (po) and (c) illustrates the 
number of SNPs in the PRS model at the po for all the sample sizes for all the target traits (y-axes:T1–T4) 
across 100 replicates of PRS analyses. Within each boxplot, the solid vertical line signifies the upper 
quantile and lower quantiles and the median is represented by a short horizontal black line. 
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DISCUSSION 

Simulation Study 

With an identical generation model for both discovery trait and T1, 
our simulation results reveal that PRS explain on average 32% variance 
of T1. Thus, out of a total of 80% trait heritability for T1, 40% of 
heritability is explained by the PRS. For a trait heritability of 80% with 
99.99% null markers (nc = 1000/1000000) in the model, previous 
simulation studies [1] demonstrated that a sample size of n = 31,000 is 
needed to achieve the maximum R2 ~80% for both target and discovery 
trait. Thus, this number is sufficiently large to shrink observed effect 
sizes for a sufficient proportion of null markers below noise level. Our 
discovery trait exceeds the required sample size, i.e., 34,000. However, in 
the situation of difficult-to-phenotype our target trait sample sizes are 
necessarily much smaller (n = 200, 500, 1000). As the set of causal 
markers is also identical between the discovery trait and T1, we can even 
speak of a common genetic etiology in this sense or it may be assumed as 
the same trait for both discovery and target sample. Although it is not 
possible to separate the PRSs estimated on multiple p-value thresholds 
for the causal and non-causal set of markers, it is essentially a sum of two 
PRSs i.e., PRS = Pcausal + Pnon-causal; here Pcausal is the PRS estimated using 
causal markers and Pnon-causal is the PRS estimated using non-causal 
markers. Thus, adding non-causal SNPs in the PRS will lead to a 
substantial increase in mean squared error of the regression model and 
thus decrease the R2 estimate. Employing the same phenotype generation 
model both for discovery and T1, the population correlation between 
them is equal to one, and given 80% heritability, the maximum 
correlation between PRS and T1 should be r = 0.89. In the target sample, 
the exact empirical correlation between T1 with the discovery trait is 
unknown, whereas the correlation between T1 and PRS is estimated on 

average as r = 0.32  = 0.56.  
For the correlated traits T2–T4, the mean R2 roughly decreases by the 

square of the correlation between T1 and the corresponding trait. Thus, 
from T1 (R2 = 0.32), the mean R2 estimates decrease for T2 to R2 = 0.82 × 
0.32 = 0.21, for T3 to R2 = 0.62 × 0.32 = 0.12, and for T4 to R2 = 0.42 × 0.32 = 
0.05. This gradual decrease in mean R2 estimates from T1 to T4 
corresponds well with decreasing empirical correlation among target 
traits. However, the range of R2 increases with decreasing sample size, 
more outliers appearing with smaller sample sizes. Similar to T1 for 
correlated traits, the average R2 estimates remains stable across all 
sample sizes.  

PsyCourse Data 

In the PsyCourse data with GAF as an outcome, we also dealt with 
different sample sizes, as we considered all patients and stratified 
analyses by the two diagnostic subgroups. When adjusting for age, 
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gender, and 5PCs, SZ-PRS (M2) does not contribute much to the variance 
of GAF. GAF and PANSS are negatively correlated with each other 
approximately r = −0.40 [17], and a similar estimates in our data. Thus, a 
regression model (M3) including confounders and PANSS for acute 
symptoms explains a much greater proportion of the variance in GAF. 
Beyond PANSS and confounders, SZ-PRS explains 1% additional variance 
(M4). This holds true for all patients and in the diagnostic groups. Note 
that, despite a small R2, the regression model M2 including SZ-PRS and 
confounders was significant for all patients and the larger psychotic 
group and not significant for the smaller affective group. It is thus hard 
to argue that the GAF score reflects symptom severity in the psychotic 
group only.  

As stated above, the regression coefficient for PRS in M4 is 2.45 (95% CI 
= (−0.13, −5.03), p-value = 0.063), yielding an increase in R2 of 0.90% over 
the model without PRS. We investigated this result further for robustness 
with respect to the number of PCs included or influential patients for this 
regression. The estimate of the regression coefficient decreased slightly 
with adding more PCs, the width of the confidence interval remained 
stable, albeit shifting more to the right (that is more towards significance). 
We identified two influential patients (leverage points) with high GAF 
values and slightly low PRS, without any indication that these patients 
should be excluded. However, if excluded, the increase in R2 when 
including SZ-PRS would only be 0.5%. Taking all these points together, 
the result by itself needs to be validated in a larger study before it can be 
considered for risk modelling or prediction.  

As also shown in the simulation, we possibly retrieve only a small 
proportion of the true R2 in small to moderate sample sizes, as typical for 
some clinical trials with longitudinal elements or complicated imaging 
measures. With very large studies also available for the target trait, 
Dudbridge’ study [1] demonstrates good retrieval of various higher R2. 

A clinical application requires that the SZ-PRS yields a higher 
proportion of variance explained when added to models including 
clinical scales such as the PANSS. However, this is not sufficient. These 
results are in agreement with those found for several psychological traits 
(retrieving <3% of variance by SZ-PRS) [18]. The hope is that multiple 
molecular and non-molecular scores (such as the PRS) might aid in 
identifying individuals at risk of disease or disease progression. This will 
only be possible if a much larger proportion of variance is explained in 
total, either for heterogeneous patient groups or for much more 
homogeneous groups possibly also identified by PRS. 

As GAF follows an ordinal scale of number of symptoms, some 
authors argue for the use of a Poisson distribution as used in the FEP 
study [8]; thus we checked the robustness of our results employing 
Poisson regression in the four regression models. These qualitatively 
yielded the same results (not shown). Additionally, we repeated our 
regression analyses for all models by performing p-value-informed 
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clumping on the PsyCourse dataset, which almost tripled the number of 
SNPs (from 93,471 to 275,719) in the SZ-PRS SNP set. We observed that the 
models incorporating PRS constructed with pre-clumped SNP data 
explained more of the variance in GAF. However, it should be noted here 
that the regression coefficients for SZ-PRS derived both from pre-clumped 
and p-value-informed clumped SNP sets were insignificant. 

Integration of Simulation Study and PsyCourse Data 

The three sample sizes of PsyCourse we analysed were n = 266, 386 
and 653. These can be regarded in light of the sample size effects in our 
simulations of n = 200, 500 and 1000 individuals. Only a very minor 
percentage of variance for GAF was explained by SZ-PRS, so this most 
likely resembles a scenario of moderate to low correlation between SZ as 
the discovery trait and GAF as the target trait. This seems plausible as 
correlation between PANSS and GAF [17] is similar to our target trait T4.  

In Santoro and Sengupta et al.’s studies [8,9], SZ-PRS was employed to 
measure its association with GAF in FEP patients only. In Santoro et al.’s 
study [8], for n = 50 FEP patients, the association between GAF and SZ-
PRS (p0 = 0.0112) was estimated in a Poisson regression framework and 
the model was adjusted for the 4 PCs. However, the reported results are 
significant (GAF; p = 0.003), an R2 is not given. Our model with SZ-PRS and 
confounders as input is comparable to the model in Santoro et al.’s study 
[8] and our results are significant as well, with a small R2 as stated 
previously. Another study [9] also reported the estimates of correlation 
between SZ-PRS (using only the significant 108 loci reported by PGC [6]) 
and GAF for n = 241 FEP individuals, but they reported no significant 
association (p = 0.801). Thus the contribution of mutual genetic variants 
to the genetic burden of GAF is not evident.  

Our simulations revealed that in general, with decreasing correlation 
between target traits, the simulated trait heritability is also decreasing as 
a function of squared correlation between respective target trait and T1 
times mean R2 of corresponding trait. Additionally we observed that with 
smaller sample sizes, the underlying distribution of R2 across 100 
replicates had more outliers towards larger R2 values by chance as 
compare to that of larger sample size. Therefore it is critical to consider 
the correlation between discovery and target trait in general as well as to 
carefully interpret results with smaller sample size such as the n = 266 
individuals for the affective group. 

The distribution of optimal p-value thresholds for T1 is narrower for 
larger sample sizes than for smaller ones. The best R2 also occurs at 
higher p-values thresholds, indicating that more markers are included 
into the final PRS. For all sample sizes from T1 to T4, the tails of optimal  
p-value threshold distributions become wider in both directions, 
indicating increasing instability in optimal p-value thresholds with 
decreasing correlation in target traits. In a simulation study [19] with 
varying sample sizes and employing various trait heritabilities, the 
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optimal p-value thresholds decreased with sample size. Lower thresholds 
indicate inclusion of fewer markers in the model that is reflected with 
decreasing correlation in the target traits as well. In the PsyCourse 
analysis of GAF with PRS however, we observed a consistently optimal  
p-value threshold regardless of varying sample sizes of n = 266, 387, and 
653.  

CONCLUSION  

In this study we performed simulations considering rather realistic 
sample sizes for the PRS analyses in the setting in which a large-scale 
GWAS on 34,000 individuals is available for the discovery trait and the 
sample size of the target trait is limited and cannot reach several 
thousand individuals, for example in the context of clinical trials. We 
also assessed the performance of PRS in phenotypes with varying 
correlations. Our simulations with identical causal markers between 
discovery and target trait reveal that reduced correlation of a phenotype 
with the discovery trait considerably reduces the effect sizes of shared 
polygenic components between target and discovery trait; this effect may 
be magnified if causal markers only overlap partially.  
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