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ABSTRACT 

Background: Prostate cancer is a common male urogenital system 
malignant tumor which is increasing worldwide. Molecular markers for 
early diagnosis and target therapy of it are not yet clinically available. 

Methods: A total of 71 prostate cancer and 10 benign prostatic 
hyperplasia tissues were collected for immunohistochemistry and 
Western blot assay of phosphorylated MAPK (Thr202) and Akt (Ser473) 
levels.

Results: Gleason grading resulted in classifying 15 prostate cancer 
tissues as well-differentiated, 25 as moderately-differentiated, and 31 
as poorly-differentiated. Immunohistochemical staining showed that 
levels of phosphorylated Akt level were higher, and phosphorylated 
MAPK were lower, in prostate cancer tissues compared to benign 
prostatic hyperplasia tissues. Elevated p-Akt/Akt, and reduced p-MAPK/
MAPK ratios correlated with poor differentiation of prostate cancer.

Conclusion: In prostate cancer tissues, p-Akt levels were elevated 
and p-MAPK protein levels were lowered. Low p-MAPK protein levels 
may be caused by higher p-Akt levels. p-Akt/p-MAPK ratio increases 
may provide a diagnostic marker for early prostate cancer diagnosis.
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1 INTRODUCTION
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Prostate cancer is a common male urogenital system 
cancer. Prostate cancer ranks second, in terms of 
incidence and mortality, for malignant tumors in 
European and American men [1]. Prostate cancer 
incidence in China is increasing due to unhealthy 
lifestyles and aging [2]. Early diagnosis and active 
treatment strategies can greatly improve prostate 
cancer patient prognoses but the mortality rate is 
still high due its malignancy [3]. Current diagnostic 
methods for prostate cancer include serum PSA 
level measurement and histopathological staining. 
These methods do not provide either early, or 
accurate diagnoses [4]. An effective biomarker for 
early diagnosis and targeted treatment is urgently 
needed.

Protein kinase B, also known as Akt, and 
mitogen-activated protein kinase (MAPK) are, 
respectively, the key proteins in the PI3K/Akt 
signaling, and MAPK signaling, pathways [5, 6]. 
A number of studies have reported that PI3K/
Akt signaling, and MAPK signaling, pathways 
closely associate with cel l  prol i ferat ion and 
invasion in a variety of malignant tumors [7, 8]. 
Activation of the PI3K/Akt signaling pathway can 
lead to apoptosis protein BAD phosphorylation 
and other proteins to suppress cell apoptosis [5]. 
MAPK signaling pathway activation can promote 
excessive tumor cell  prol i feration leading to 
oncogenesis [6]. Phosphorylated Akt levels in human 
prostate cancer tissues have been measured by 
immunohistochemistry with controversial findings.

Waalkes et al. observed a significantly lower 
p-Akt expressions in prostate cancer tissues 
compared to normal prostate tissue (p = 0.028) [9]. 
p-Akt protein levels were found to be significantly 
higher in prostate cancer tissues than in benign 
prostatic hyperplasia or high-grade prostatic 
intraepithelial neoplasia tissues [10]. Ko et al. 
demonstrated that the p-Akt ratio in prostate cancer 
tissues was significantly lower than that in high-
grade prostatic intraepithelial neoplasia tissues [11]. 
Che et al. reported that p38 MAPK levels significantly 
correlated with tumor progression and prostate 
cancer patient survival [12]. Phospho-MAPK levels in 
prostate cancer tissues has, to our knowledge, yet 
been investigated and reported on. Any relationship 
between Akt and MAPK phosphorylation in prostate 
cancer has not been addressed.

Th is  s tudy invest iga ted MAPK and Akt 
phosphory lat ion in prostate cancer t issues 
and benign prostatic hyperplasia (BPH) using 
immunohistochemistry and Western blot.

2 MATERIALS AND METHODS 

2.1 Subject selection
A total of 71 prostate cancer tissues were collected 
at our Department between January 2013 and 
December 2014. Prostate cancer patient mean 
age was 56.2 ± 6.5 (52 - 68). None received 
radiotherapy, chemotherapy, or immunotherapy 
before surgery. Benign prostatic hyperplasia (BPH) 
tissues were also collected from 10 BPH patients 
during the same period. BPH patient mean age was 
54.1 ± 3.5 (45 - 63). The tissues collected were kept 
in liquid nitrogen, or fixed by 10 % formaldehyde for 
paraffin embedding. This study was approved by the 
ethics committee of The Third Xiangya Hospital. The 
signed informed consent form was obtained from all 
subjects. 

2.2 HE staining and Gleason grading
Paraffin embedded tissues were sectioned at a 
thickness of 5 μm. Paraffin sections were baked at 
60°C for 30 min, and then rinsed in dimethyl benzene 
for 15 min to deparaffinize prior to hematoxylin and 
eosin (HE) staining. After removing the dimethyl 
benzene from gradient alcohol, the sections were 
twice washed with distilled water. Next, the sections 
were stained with hematoxylin for 15 min and twice 
washed with distilled water. After differentiation suing 
1 % hydrochloric acid alcohol for 30 s, the sections 
were further washed in distilled water for 15 min. The 
sections were then stained with 1 % eosin for 3 min 
and rinsed in 70 % alcohol. Finally, the sections were 
soaked in a xylene-alcohol mixture (1:1), for 5 min, 
then soaked in xylene for 5 min and 15 min. Slices 
were mounted and observed under a microscope. 
The Gleason grading system was used to classify 
tumor tissues as being: from well-differentiated (level 
1, score 1) to undifferentiated (level 5, score 5). If 
tumor tissue differentiation was heterogeneous, a 
Gleason Score (GS) was obtained by primary and 
secondary structure scores. For single-structure 
tissue, the GS was doubled to obtain its final score [13].

2.3 Immunohistochemistry
p-AKT and p-MAPK protein expression in tissues 
was detected by immunohistochemistry. Paraffin-
embedded sections were deparaffinized using 
xylene, gradient alcohol, and distilled water. The 
sections were incubated with 3 % H2O2 solution 
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to block peroxidase activity for 10 min at room 
temperature (RT). After blocking with a 5 % BSA 
solution at RT, the sections were incubated with 
a primary antibody (1:2000 dilution for Ser473 
p-AKT and Thr183 p-MAPK) at 37°C for 2 hrs. After 
washing with 1 × PBS, the sections were incubated 
with a biotin-conjugated secondary antibody 
(1:1000) at 37°C for 30 min. The sections were 
then incubated with HRP-conjugated streptavidin 
at 37°C for 30 min. After washing with 1 × PBS, the 
sections were developed using DAB chromogenic 
agents for 10 min. The reaction was then stopped, 
and the sections were washed with distilled water. 
After hematoxylin counterstaining, dehydration, 
hyalinization, and mounting, the sections were 
observed under a microscope. Five random fields 
were selected under a high-power field (400X) to 
calculate total cell count and positively-stained cell 
count [14].

2.4 Western blot
Total protein was extracted from cells using an RIPA 
buffer. The proteins were separated on a 15 % 
SDS-PAGE gel and electrophoretically transferred 
to PVDF membranes. After being blocked using a 
TBST buffer containing 5 % skim milk at 37°C for 1 
hr, the membranes were incubated with a primary 
antibody (anti-Akt, anti-Akt Ser473, anti-MAPK, and 
anti-p-MAPK were purchased from Cell Signaling 
Technology Inc., 1000 dilution) at 4°C overnight. After 
washing with a TBST buffer, the membranes were 
incubated in an HRP-conjugated IgG secondary 
antibody (1:1000) at RT for 1 hr. The membranes 
were then incubated with chromogenic substrates 
and exposed to X-ray films. Protein band optical 

densities were scanned and analyzed as previously 
described [15].

2.5 Statistical analysis
All statistical analyses were performed using 
SPSS 20.0 statistical software. Qualitative data 
was compared using the Kruskal-Wallis Test. 
Enumeration data were presented as either, rate or 
percentage, and compared using the chi-square test. 
Measurement data is presented as mean ± standard 
error and compared by using either t test or one-
way ANOVA. A two-tailed p < 0.05 was considered 
statistically significant.

3 RESULTS

3.1 HE staining and Gleason grading
The prostate tumor tissues were HE-stained (Fig. 
1) for Gleason grading (Table 1). After grading 18 
cases had a GS of 2-4 points. In these, medium-
sized glandular tumor tissue was observed, but no, 
or only minor, infiltration phenomenon appeared in 
the tumor margin (Fig. 1b). Twenty-five cases were 
graded with a GS of 5-7 points. In these, dispersed 
dysplastic glands and obvious interstitial infiltration 
were observed (Fig. 1c). Thirty-one cases were 
graded with a GS of 8-10 points. In these, almost no 
adenoid structures, or acini fusion, were be found. 
Tumor cells had flake-like, funicular, or single-celled 
structures, and severe diffuse infiltration appeared 
(Fig. 1d).

Fig. 1 HE staining of prostate cancer tissues (100×) a, BPH tissue; b, prostate cancer tissue at 2-4 points; c, 
prostate cancer tissue at 5-7 points; d, prostate cancer tissue at 8-10 points. 



 MAPK and Akt Phosphorylation in Prostate CancerBo Wan  et al

MED ONE  2016, 1 (1): 2 | Email:mo@qingres.com                                                                                               February 25, 2016 4

3.2 Immunohistochemistry
Immunohistochemical  s ta in ing showed that 
phosphorylated Akt and MAPK proteins were usually 
in the cytoplasm (Fig. 2). P-Akt staining was positive 
in a part of prostate cancer tissues, and a part of 
BPH tissues. P-Akt staining intensity was stronger 
in prostate cancer tissues than that in BPH tissues, 

Fig. 2 Immunohistochemistry of p-Akt and p-MAPK. A) p-Akt immunohistochemistry (400×). B) 
p-MAPK immunohistochemistry (400×). a, BPH tissue; b, well-differentiated prostate cancer tissue; c, 
intermediate-differentiated prostate cancer tissue; d, poorly-differentiated prostate cancer tissue.

suggesting that p-Akt overexpressed in prostate 
cancer. Positive p-MAPK staining was observed in 
only part of prostate cancer tissue and part of BPH 
tissue. p-MAPk staining intensity was weaker in 
prostate cancer tissues than that in BPH tissues. 
Proliferation correlated negatively with p-Akt protein 
levels, but positively with p-MAPk levels.

Table 1. Gleason grading of prostate cancer

Well-differentiation Intermediate-differentiation Poorly-differentiation

Gleason score 2 3 4 5 6 7 8 9 10

Cases 2 6 7 6 10 9 10 8 13

Total case No. 15 25 31
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Fig. 3 Western blot assay of Akt, p-Akt, MAPK, p-MAPK protein expression. A) Representative Western blot. 
B) Semi-quantitative analysis of p-Akt/Akt and p-MAPK/MAPK ratio. a, BPH tissue; b, well-differentiated prostate 
cancer tissue; c, intermediate-differentiated prostate cancer tissue; d, poorly-differentiated prostate cancer tissue. 
*p < 0.05 between p-Akt/Akt and p-MAPK/MAPK.

3.3 The relationship between p-Akt and 
p-MAPK protein level in prostate cancer 
tissues
Total, and phosphorylated, Akt and MAPK protein 
levels in prostate cancer tissues were measured 

using Western blot (Fig. 3A). p-Akt ratios to total 
Akt and p-MAPK ratios to total MAPK protein 
levels were calculated (Fig. 3B). The p-Akt/total Akt 
ratio increased, whereas the p-MAPK/total MAPK 
ratio decreased in prostate cancer with a poorer 
differentiation (p < 0.05).
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nucleus to trigger transcription factors, resulting 
in cell proliferation and differentiation [21]. MAPK 
is activated by phosphorylation [22]. RAF inhibitors 
have been found to activate MAPK by relieving 
inhibitory autophosphorylation [23]. A study also 
revealed that p-Akt can decrease Raf protein activity 
by phosphorylating Ser259 on the Raf protein. This 
reduces MAPK phosphorylation levels [24]. This may 
explain why our study found increased p-Akt levels, 
but decreased p-MAPK protein levels, in prostate 
cancer tissues compared to benign prostatic 
hyperplasia tissues. 

In conclusion, this study indicates that p-Akt 
levels are elevated, but p-MAPK protein levels are 
lower in prostate cancer tissues and suggests that 
high p-Akt levels may be one of the causes of low 
p-MAPK protein levels. Our findings suggest that 
a high p-Akt/p-MAPK ratio might be a diagnostic 
marker for early diagnosis of prostate cancer.
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