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ABSTRACT
Background: Renal cancer (RC) originates in the cells of the kidneys. 
Worldwide, approximately 208,500 new cases of renal cancer are 
diagnosed annually. This accounts for just under 2 % of all cancers. 
Those with a family history of RC have an increased risk of developing 
the disease. Recent research has identified hundreds of genes 
which may relate to its development. No study has systematically 
summarized these findings or provided an objective view of the genes 
reportedly associated with RC.

Methods: Literature data mining (LDM) was performed on more than 
1,100 articles for publications between 1988 and April 2016 in which 
423 genes were reported to be RC-associated. A gene set enrichment 
analysis (GSEA) and a sub-network enrichment analysis (SNEA) were 
performed to study the functional profile and pathogenic significance 
of these genes. A network connectivity analysis (NCA) to study the 
associations between the reported genes was done. Literature, and 
enrichment metrics, analyses were used to identify genes with specific 
RC significance.

Results: Multiple RC associations for 329 of the 423 genes enriched 
100 pathways (p < 1.2e-10) were demonstrated. Ten genes (IL6, 
VEGFA, HIF1A, EGFR, PTEN, TP53, FGF2, CTNNB1, HMOX1, 

http://mo.qingres.com
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and BRCA1) were identified as having the most 
significant association with RC in terms of both 
functional diversity and replication frequency. Three 
novel genes, CD274, NOTCH1, and CREB1, were 
found to play roles within many significant RC-related 
pathways, warranting their further study. SNEA, and, 
NCA results indicated that many of these genes work 
as a functional network that plays roles in the RC-
related disorder pathogeneses.

Conclusion: The results suggest that the genetic 
causes of RC are linked to a genetic network 
composed of a large number of genes. The gene 
lists, together with the literature, and enrichment, 
metrics provided by this study, may serve a basis for 
further biological and genetic studies in the field.

Key Words: Renal Cancer; Literature Data Mining; 
Gene Set; Enrichment Analysis; Sub-network 
Enrichment Analysis; Network Connectivity Analysis

1 INTRODUCTION
Renal cancer (RC), also called kidney cancer, is a 
type of cancer that originates in kidney cells. Renal 
cell carcinoma (RCC) and transitional cell carcinoma 
(TCC) are the two most common types of RC. Their 
names identify the types of cells from which they 
develop. The lifetime risk of RC is approximately 
1.6 % for both men and women [1]. The rate of new 
cases of kidney, and renal pelvis, cancer is 0.016 %, 
and about 3.9 out of 100,000 men and women die 
of RC annually [1]. Cancers confined to the kidney 
have a five-year survival rate of 92 %. However, 
if the cancer has spread to surrounding lymph 
nodes, survival rate is 65 %. If it has metastasized, 
the survival rate is 12 % [1]. The highest rates were 
recorded in North America and the lowest rates in 
Asia and Africa [2].

Known risk factors include cigarette smoking, 
obesity, the regular use of NSAIDs, and hypertension 
[3]. Genetic variations, and their interactions with 
environmental exposures, are believed to influence 
RC risk, but studies of candidate gene approaches 
have produced no conclusive results [4]. Recently an 
increased number of articles have reported hundreds 
of genes and proteins which are related to RC. Many 
were suggested as potential disease biomarkers, 
such as VEGFA, IL6, and MIR34A [5-7]. Some genes, 
such as, IL2, have been studied in clinical trials [8]. 

Some studies report genetic, and quantitative, 
changes of genes for RC [9, 10]. Increased, and 
decreased, gene expression levels and activities 
have been observed [10, 11].  Many genes were 
reported to influence RC pathogenic development 
via unknown mechanisms [12]. Some studies suggest 
that functional mechanism linked to RC. Datta et 
al. found, by exploring the effects of calcineurin 
inhibitors (CNI) on the expression, and function, 
of CXCR3 splice variants, that CNI may mediate 
human RC progression by downregulating CXCR3-B 
and by promoting proliferative signals, probably via 
CXCR3-A [13]. 

No systematic analysis has evaluated the 
quality, and strength, of these reported genes as 
a functional network, or group in a study of RC’s 
underlying biological processes. This study attempts 
to provide a more encompassing view of the genetic-
map through comprehensive literature data mining 
(LDM), accompanied by gene set enrichment 
analysis (GSEA) and a sub-network enrichment 
analysis (SNEA) which examines the underlying 
functional profiles of the genes identified [14]. We 
hypothesize that a majority, if not all, of the previously 
reported genes play roles in RC development, and 
that the major pathways, or gene sets enriched by 
these genes, are candidate pathways through which 
these genes influence RC pathogenesis.

2 METHODS AND MATERIALS
The study structure is as follows: 1) LDM to discover 
gene-MDD relations; 2) Enrichment analysis of 
the identified genes to study their pathogenic 
significance for RC. 3) Literature and enrichment 
metrics analysis to identify genes with specific 
significance. 4) NCA to test functional associations 
between the reported genes.

2.1 Literature data mining and article 
selection criterion
An LDM was performed on all articles available in 
the Pathway Studio database (www. pathwaystudio.
com) up to April 2016, covering more than 40 million 
scientific articles. It sought those reporting a gene-
RC relationship. The LDM was conducted using a 
finely-tuned Natural Language Processing (NLP) 
system of Pathway Studio software, which has the 
capability of identifying, and extracting, relationship 
data from scientific literature. Only publications 
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containing a biological gene-RC interaction as 
defined by the ResNet Exchange (RNEF) data 
format were included (http://www.gousinfo.com/).

2.2 Literature metrics analysis
Two scores for each gene-disease relationship are 
proposed for the literature metrics analysis.

A reference number underlying a gene-disease 
relationship as the gene's reference score (RScore) 
is defined in Eq. (1).

    RScore = n (1)

where n is the total number of references supporting 
a gene-disease relation. 

The gene’s age score is defined as the earliest 
publication date of a gene-disease relationship 
(AScore) in Eq. (2).

AScore = max(1≤i≤n) Article Pub Agei (2)

where n is the total number of references supporting 
a gene-disease relation, and

Article Pub Age = Current date - Publication date + 1 (3)

2.3 Enrichment metric analysis
Assuming that a disease is associated with genetic 
pathways, the gene-wise enrichment score (EScore) 
for the gene within a gene set is defined in Eq. (4).

EScorek = ∑(i=1) (-log10 pValuei) / max(1< i< n) (-log10 pValuei) (4)

where pValuei is the enrichment score of the ith 
pathway with the gene set; m ∈ R is the number of 
pathways including the kth gene; we define m as the 

PScore for the gene:

PScorek=The number of pathways from R including the kth gene (5)

The PScore presents how many of the disease-
related pathways are associated with the genes. The 
EScore shows pathway significance.

2.4 Enrichment analysis
A GSEA and a sub-network enrichment analysis 
(SNEA) was performed on 3 groups in order to better 
understand the underlying functional profiles and the 
pathogenic significance of the reported genes: 1) The 
entire gene list (423 genes); 2) 2-subgroups selected 
using the highest quality matrix scores. A network 
connectivity analysis (NCA), using a Pathway Studio 
network building module, was conducted.

3 RESULTS

3.1 Summary of LDM results
An LDM of 1,100 articles reporting 423 genes 
associated with RC was conducted. Using the 
reported category of gene-RC relations, 7 different 
classes are observed: 1) biomarkers (4.91 %); 2) 
cell expression (1.64 %); 3) clinical trials (1.82 %); 4) 
genetic changes (42.64 %); 5) quantitative changes 
(18.36 %); 6) regulation (29.55 %); and, 7) state 
changes (1.09 %).

Of the 423 genes, 9.93 % presented biomarker 
relationships to the disease, 3.55 % with cell 
expression, 2.60 % with clinical trials; 33.10 % 
with genetic changes; 35.70 % with quantitative 
changes; 39.24 % with regulation; and 2.60 % 
with state changes. It should be noted that, for a 
candidate gene, there may be more than one article 
reporting a relationship with RC. One gene may 
have multiple relations. A single relationship to the 
disease is reported for (79.20 %) of the genes, whilst 
20.80 % of the genes are reported to have multiple 
relationships: 16.08 % have 2 types of relationships; 
3.55 % have 3; and, 1.18 % have 4 (Fig. 1).
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The publication date distribution of the 1,100 
articles appears in Fig. 2 (a). This study covers 
literature data for the years 1988-2016 for novel 
genes reported in each year (Fig. 2 (b)). The articles 
have an average publication age of 5.8 years, 
indicating recent publication. Especially since 2010, 

more publications have been available showing 
discoveries of more novel genes (Fig.2 (b)). The 
analysis showed that publication date distributions 
of the articles underlying each of the 423 genes are 
similar to those in Fig. 2

     Fig. 1 Gene-wise relation type distribution of 423 genes

                                        (a)                                                                                   (b) 

Fig. 2 Histogram of publications reporting gene-disease relationships between RC and 423 genes. (a) 
article publication date; (b) number of novel genes identified each year.



 A Genetic Network of 423 Genes for Renal CancerPeng Zhou  et al

MED ONE  2016, 1 (3) : 1 | Email:mo@qingres.com                                                                                                   June 25, 20165

INPP5K.

Of  the 423 genes,  16 were repor ted in 
2016 and appear in Table 1. Full results appear 
in Supplementary Material 1. Table 1 lists, in 
descending order, the top 16 genes as ranked by 
highest RScore.

3.2 Marker Ranking
Using two literature metric scores, genes were 
identified which were reported to have support 
from large numbers of articles, such as FH (72 
articles), VHL (42 articles), and IL2 (39 articles). 
In approximately the last year, some genes have 
been reported such as FOXO4, HIST1H2APS4, and 

Table 1. Top 16 genes with reported associations to RC as ranked by different scores

Genes with

AScore = 1
FOXO4; HIST1H2APS4; INPP5K; KLK3; MIR1236; MIR148B; MIR200A; MIR206; 
MIR22; MIR362; NOTCH1; SDPR; TICAM1; TRPC4; TRPM2; TRPM8

Genes By

RScore
FH; VHL; IL2; MET; PTEN; FLCN; TSC2; MTOR; EGFR; TP53; HIF1A; VEGFA; WT1; 
EPAS1; PBRM1; SETD2

3.3 Enrichment Analysis
This section presents the GSEA and SNEA results 
for 3 different groups: All 423 genes, and both gene 
groups in Table 1.

3.3.1 Enrichment Analysis on all 423 genes
The entire list of 100 pathways, or gene sets 
enriched with p-value < 1.2e-10 (329/423 genes), 
appears in Supplementary Material 2. The 20 
pathways enriched with p-values < 1e-20 (with 
272/423 genes) are in Table 2.

Of the 100 enriched pathways or gene sets: 
17 were related to cell growth and proliferation 

 Js(A,B) =                                                                (6)

(183/423); 7 to cell apoptosis (148/423); 4 to 
transcription factors (110/423); 2 to protein 
phosphorylation (44/423); and 1 to protein kinase 
(31/423). The Jaccard similarity scores presented 
in Table 2 compare the similarity, and diversity, of 
sample sets, as defined by Eq. (6).

Where, A and B are two sample sets.

A ∪ B
A ∩ B

Table 2. Molecular function pathways or groups enriched by the 423 genes reported

Pathway/gene set name Hit type GO ID # of Entities Overlap p-value Jaccard Similarity

Response to drug biological 
process 0017035 509 72 6.79E-44 0.08

Positive regulation of cell 
proliferation

biological 
process 0008284 568 69 1.18E-37 0.08

Negative regulation of cell 
proliferation

biological 
process 0008285 471 63 7.62E-37 0.08
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Response to hypoxia biological 
process 0001666 259 49 5.42E-36 0.08

Negative regulation of 
apoptotic process

biological 
process 0006916 650 68 5.35E-33 0.07

Response to organic cyclic 
compound

biological 
process

0014070 253 42 1.60E-28 0.07

Aging biological 
process

0016280 254 42 1.89E-28 0.07

Angiogenesis biological 
process

0001525 256 40 3.71E-26 0.06

Positive regulation of 
apoptotic process

biological 
process

0043065 393 47 2.24E-25 0.06

Positive regulation of 
transcription from RNA 
polymerase II promoter

biological 
process

0010552 1041 74 4.06E-25 0.05

Positive regulation of 
protein phosphorylation

biological 
process

0001934 168 33 4.83E-25 0.06

Response to estradiol biological 
process

0032355 175 33 1.92E-24 0.06

Positive regulation of cell 
migration

biological 
process

0030335 178 32 4.64E-23 0.06

Cell surface cellular 
component

0009929 645 55 4.71E-23 0.05

Response to organic 
substance

biological 
process

0010033 153 30 7.73E-23 0.06

Positive regulation of gene 
expression

biological 
process

0010628 293 38 6.36E-22 0.06

Cellular response to 
mechanical stimulus

biological 
process

0071260 101 25 6.94E-22 0.05

Positive regulation of 
transcription, DNA- 
templated

biological 
process

0045941 623 53 1.69E-21 0.05

Cellular response to organic 
cyclic compound

biological 
process

0071407 94 24 2.09E-21 0.05

Tumor Suppressors Pathway Studio 
Ontology

Pathway Studio 
Ontology

111

19

9.97E-21 0.04
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There were 5 additional pathways/gene sets 
related to cell apoptosis (p-value: [1.1e-019,1.2e-010] 
and 2 additional pathways/gene sets related to 
transcription factors: regulation of apoptotic process 
(GO: 0042981, p-value = 1.1e-019, overlap: 35); 
apoptotic process (GO: 0008632, p-value = 1.2e-
019, overlap: 57); activation of cysteine-type 
endopeptidase activity involved in apoptotic process 
(GO: 0006919, p-value = 1e-012, overlap: 17); 
negative regulation of neuron apoptotic process (GO: 
0043524, p-value = 7e-011, overlap: 19); apoptotic 
signaling pathway (GO: 0097190, p-value = 1.2e-010, 
overlap: 17); negative regulation of transcription from 
the RNA polymerase II promoters (GO: 0000122, 

p-value = 2e-012, overlap: 46); regulation of 
transcription from the RNA polymerase II promoters 
in response to hypoxia (GO: 0061418, p-value = 
1.8e-011, overlap: 10).

I n  a d d i t i o n  t o  G S E A ,  a  S N E A ( h t t p : / /
pathwaystudio.gousinfo.com/SNEA.pdf) was 
performed using Pathway Studio for purposes 
of identifying any pathogenic significance of the 
reported genes to other disorders that are potentially 
related to RC. The results appear in Supplementary 
Material 3. In Table 3, disease-related sub-networks 
enriched with a p-value < 4.24E-167 are presented. 

Table 3. Sub-networks enriched by the 423 genes reported

Gene Set Seed Total # of  
Neighbors Overlap p-value Jaccard Similarity

Breast Cancer 3146 308 7.46E-187 0.09

Cancer of Stomach 1833 256 1.46E-183 0.13

Neoplasm Metastasis 1843 256 6.11E-183 0.13

Carcinoma, Hepatocellular 2417 279 6.83E-182 0.11

Lung Cancer 1723 249 5.84E-181 0.13

Colorectal Cancer 2291 270 2.02E-176 0.11

Ovary Cancer 1402 225 4.66E-170 0.14

Clear Cell Renal Cell 
Carcinoma 471 159 9.55E-170 0.22

Cancer of Pancreas 1159 211 1.74E-169 0.16

Prostate Cancer 1954 249 4.50E-167 0.12

Table 3 Suggests that many of the reported RC-related genes have a large percentage of overlap with other cancer 
diseases (Jaccard Similarity ≥ 0.10).
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3.3.2 Enrichment Analysis on the top 16 genes 
with highest scores
The top 16 genes listed in Table 1 in terms of 
GSEA and SNEA results are compared. The top 10 
pathways/sub-networks for the AScore group and 
the RScore group (Table 1) are presented in Tables 
4 and 5. The entire report appears in Supplementary 
Materials 2 and 3.

Using the same enrichment p-value threshold 
(p < 6E-004), 23 pathways/gene sets were identified 
as enriched with the 16 genes with top AScores, 
while the number for the RScore group is 119. The 
entire list of these pathways/gene sets appears in 
Supplementary Material 2. Table 4 presents the 
top 10 pathways enriched with the 16 genes from 
AScore and RScore groups.

Table 4. Pathways/groups enriched by 16 genes with highest AScore and RScore

Pathway/gene set Name GO ID p-value

The first 10 
pathways/gene 
sets enriched 
By top 16 genes 
with highest 
AScores

store-operated Ca2+ channel Pathway Studio Ontology 7.60E-08

TC 1.A.4.5 Pathway Studio Ontology 2.13E-06

Calcium channel activity 0005262 8.33E-06

Non-voltage Ca++ import proteins Pathway Studio Ontology 9.10E-06

Calcium ion transmembrane transport 0070588 2.32E-05

Calcium ion transport 0006816 3.03E-05

Ion channel activity 0005216 5.89E-05

Oligodendrocyte differentiation 0048709 9.11E-05

Ion transmembrane transport 0034220 2.08E-04

Negative regulation of angiogenesis 0016525 4.00E-04

Positive regulation of transcription from 
RNA polymerase II promoter 0010552 1.48E-11

Tumor Suppressors Pathway Studio Ontology 1.18E-10

The first 10 
pathways/gene 
sets enriched 
by top 16 genes 
with highest 
RScore

Cellular response to hypoxia 0071456 4.01E-10

Regulation of thymocyte apoptotic process 0070243 1.45E-09

Regulation of transcription from RNA 
Polymerase II promoter in response to 
hypoxia

0061418 3.91E-09

Negative regulation of apoptotic process 0006916 8.39E-09

Negative regulation of cell proliferation 0008285 2.63E-08

Negative regulation of cell size 0045792 5.98E-08

Lactation 0007595 1.00E-07

Positive regulation of protein 
phosphorylation 0001934 1.26E-07

Table 4 suggests that genes with the top AScores, and those with the top RScores, enrich different groups of pathways 
with different p-values (AScore group: 7.60E-08~4.00E-04; RScore group:1.48E-11~1.26E-07), suggesting that these 
newly-reported genes are functionally different than from those that have been the most frequently reported.
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An enrichment analysis against disease sub-
networks was done for the SNEA analysis. The 
complete list of results appears in Supplementary 
Material 3. Table 5 presents the top 10 most 

significantly enriched disease related sub-networks 
as enriched by the top 16 genes from both the 
AScore, and RScore, groups.

Table 5. SNEA results by 16 genes with the highest AScore and RScore

Gene Set Seed Overkao p-value Jaccard 
Similarity

The first 10 
pathways/gene 
sets enriched    
by top 16 genes 
with highest 
AScores

Diabetes Mellitus 11 2.03E-08 0

Cancer, head and neck 5 1.62E-06 0.01

Monocrotaline-induced pulmonary 
hypertension 3 2.99E-06 0.05

Pulmonary Disease, Chronic 
Obstructive 5 4.21E-05 0.01

Lung Cancer 7 5.53E-05 0

Carcinoma, Endometrioid 3 5.85E-05 0.02

Adenocarcinoma, Clear Cell 3 6.00E-05 0.02

Visceral pain 2 6.81E-05 0.06

Pulpitis 2 6.81E-05 0.06

Cancer of Stomach 7 8.21E-05 0

von Hippel-Lindau Disease 11 2.14E-28 0.24

Papillary Renal Cell Carcinoma 12 2.89E-28 0.16

The first 10 
pathways/gene 
sets enriched    
by top 16 genes 
with highest 
RScore

Kidney cyst 12 1.33E-27 0.14

Clear Cell Renal Cell Carcinoma 15 2.40E-25 0.03

Kidney metastasis 11 4.50E-25 0.14

Thyroid medullary carcinoma 10 3.02E-20 0.08

Adenocarcinoma, Clear Cell 10 3.93E-20 0.08

Cancer family syndromes 9 4.83E-20 0.12

Neuroendocrine Tumors 10 3.29E-18 0.05

Li-Fraumeni Syndrome 8 1.02E-17 0.12

Table 5 suggests that both groups enriched other cancer-related disease sub-networks. However, the enrichment p-values 
of the RScore group are much more significant than those of the AScore group, with higher Jaccard similarities.
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                        (a) By RScore group                                                (b) By AScore group

Fig. 3 Connectivity networks of 16 genes from different groups. These networks were generated using 
Pathway Studio. Unrelated genes are in blue.

3.4 Connectivity Analysis
An NCA was performed on the top 16 genes with the 
highest RScores and AScores (Table 1) to generate 
gene-gene interaction networks. The RScore group 
results showed 104 connections among all 16 genes, 
with more than 300 instances of literature support. 
Genes within the AScore group showed only 6 

relations among 7/16 genes, (Fig. 3 (b)). There were 
9 genes that showed no direct relation with other 
genes in the group (Fig. 3 (b); highlighted in green). 
This is consistent with both the GSEA and the SNEA, 
suggesting that genes with the lowest AScores are 
not as functionally close to each other as those from 
the RScore group.

3.5 EScore Analysis
Using GSEA, two biological metrics, EScore 
and PScore, were generated for each gene. The 
PScore value represents how many RC-associated 
pathways involved the gene. The EScore shows the 
significance of those pathways (Eq. (4)).

A correlation analysis was conducted using 
the averaged metric values for the 423 genes at a 
group level, to compare the EScore and the PScore 

with the two literature metrics (Fig. 4 (a)). The 423 
genes were sorted by RScore and metric value 
was averaged using a moving window of length 14. 
Results showed that the average scores strongly 
correlate, especially for the top ones ranked by 
different scores (Fig. 4 (a) and Table 6). The group-
wise PScore and EScore were extremely correlated 
(p ≈ 1).
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                                       (a)                                                                               (b)

Fig. 4 Comparison of different metrics. (a) A Venn diagram of the top 59 genes selected by different metrics; (b) 
Comparison of average metrics values with a gene set size of 14.

Table 6. Pearson correlation coefficients between different metrics

RScore EScore PScore AScore

RScore 1.00 0.62 0.63 0.47

EScore 0.62 1.00 0.99 0.86

PScore 0.63 0.99 1.00 0.83

AScore 0.47 0.86 0.83 1.00

A cross-analysis of the top 59 genes selected 
using different scores (corresponding to the number 
of genes reported within the past two years (2015-
Apr. 2016)) was performed, and are presented in the 
Venn diagram in Fig.4 (a) (Oliveros, 2007-2015).

There was a strong overlap between PScore 
and EScore group (53/59). These 53 genes are 
related to most pathways that were significantly 
enriched (Supplementary Material 2). The AScore 
group had an overlap of one gene with the RScore 
group (CD274: 5 references), and an overlap of 2 
genes with both the EScore and PScore groups 
(NOTCH1: 1 reference, CREB1: 1 reference). These 
novel genes were reported within the last 2 years 
and demonstrated a relatively high frequency of 

replication or multiple functional associations with the 
disease (PScore:15.00 ±1.41 pathways), suggesting 
that they merit further study.

There were 10 genes identified with overlap of 
the EScore, PScore, and RScore groups, including 
IL6, VEGFA, HIF1A, EGFR, PTEN, TP53, FGF2, 
CTNNB1, HMOX1, and BRCA1, with RScore = 
11.20 ± 6.88 references, PScore: 27.70 ± 8.39 
pathways. There were 41 genes observed in both 
the PScore group and the EScore group, which were 
not in the RScore group. This included: TGFB1, 
TNF, PDGFB, BCL2, PRRCA, FAS, AKT1, PTK2, 
TGFBR2, CAV1, BMP2, IGF1, CDKN1B, KDR, MYC, 
HRAS, SERPINE1, MMP9, CCL2, CDKN1A, AGT, 
STAT1, IGF2, SFRP1, EPO, CDKN2A, IL4, FGF1, 
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MDM2, HSPD1, GSK3B, NOD2, IFNG, MMP2, 
COL1A1, CASP1, AGER, TIMP1, IL18, CXCL12, 
and RPS27A. Each of these genes play roles within 
many significant disease pathways (21.80 ± 7.09 
pathways). RC-gene relationships involving these 
genes are old (ASocre: 10.59 ± 6.78 years) and not 
frequently replicated (1.49 ± 0.75 references).

4 DISCUSSION
We performed an LDM on 1,100 articles (published 
between 1988 and April 2016) which reported 423 
genes associated with RC. Supplementary Material 1 
provides the full gene list together with the literature 
and enrichment metrics scores. Results from GSEA 
and SNEA support the literature in that most of these 
genes may play roles in RC pathogenesis. NCA 
showed that many of these genes are functionally 
linked to one another.

As an automat ic data mining approach, 
the NLP technique is effective, and efficient, in 
processing large amounts of literature data for 
LDM. However, an automatic LDM method may 
produce false positives. Therefore, the results of this 
study are intended to provide a map for the current 
field of RC genetic study and provide a basis for 
further biological and genetic studies in the area. 
Supplementary Material 1 is intended to provide 
detailed information about the articles studied, 
including the specific sentences where a relationship 
is located.

This analysis did not specifically focus on any 
individual gene, however, it was observed that the 
genes identified did not have equal publication 
frequencies (RScore), or novelty (AScore), or 
functional diversity (EScore). Using a proposed 
quality metric score, the genes could be ranked 
according to different needs, or significance, and 
the top ones selected for further analysis (Table 1). 
For example, the top 5 genes by AScore: FOXO4, 
HIST1H2APS4, INPP5K, KLK3, and MIR1236, have 
recently been reported on. FH, VHL, IL2, MET, and 
PTEN are the top 5 most-often-replicated-in-studies 
genes (with highest RScores), suggesting that they 
are common RC variables.

In the top 100 pathways enriched with 329 of the 
423 genes (Supplementary Material 2), some genes 
appear in multiple significantly-enriched pathways 
and present a high EScore. Examples include 
TGFB1 (46/100 pathways), IL6 (38/100 pathways), 
TNF (37/100 pathways), VEGFA (39/100 pathways), 
and PDGFB (36/100 pathways). These genes play 

multiple roles within different genetic pathways 
associated with RC indicating their biological 
significance with the disease.

There were 10 genes that overlapped in the 
EScore, PScore, and RScore groups. These genes 
were frequently replicated (11.20 ± 6.88 references) 
in previous studies showing an association with 
RC, and play roles within multiple (27.70 ± 8.39) 
significant pathways associated with RC. These 
results indicate that these genes are highly likely to 
possess pathogenic significance for RC.

There were 3 novel genes (NOTCH1, CD274, 
and CREB1) that were also identified that were in 
both the EScore and the PScore groups. These 
were reported in last 2 years in a few references. 
They play roles within multiple significant pathways 
implicated with RC, warranting further study. 
For instance, NOTCH1 was recently reported 
(2016) by one reference. This gene is involved in 
many previously-implicated RC pathways or with 
other cancers, such as positive regulation of cell 
proliferation (0008284), negative regulation of cell 
proliferation (0008285), angiogenesis (0001525), 
positive regulation of apoptotic process (0043065), 
positive regulation of cell migration (0030335), 
regulation of cell proliferation (0042127), positive 
regulation of epithelial cell proliferation (0050679), 
negative regulation of canonical Wnt signaling 
pathway (0090090), and organ regeneration 
(0031100) [15-17].

There were 41 genes found in both the PScore 
group and the EScore group, but which were not 
in the RScore group. The RC-gene relationships 
involving these genes were older (ASocre: 10.59 ± 
6.78 years) and less frequently replicated (1.49 ± 
0.75 references). Our results suggest that they may 
be worthy of further study.

Most genes identified by this LDM were included 
in previously implicated RC pathways. This includes 
17 cell growth and proliferation-related pathways, 
2 protein phosphorylation-related pathways, 4 
pathways/gene sets related to transcription factors, 
7 cell apoptosis-related pathways, and 1 protein 
kinase related pathway [18-22]. It is hypothesized that 
the majority of these reported genes, especially 
those identified with significantly enriched pathways, 
should be functionally linked to RC. There may 
be false positives from separate studies in the 
publications but it seems less likely that a large 
group of genes have been falsely perturbed [14].

When members of a gene set strongly cross-
correlate, GSEA can boost the signal-to-noise ratio 
making it possible to detect modest changes in 
individual genes [14]. The NCA analysis showed that 
many of the frequently reported genes relating to 
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RC were functionally associated with one another 
(Fig. 3). This conclusion is supported by hundreds 
of scientific reports. There were 329 of the 423 
included in the top 100 enriched pathways (p-value < 
1.2e-10), and 272 that were in the top 20 pathways 
listed in Table 2 (p-value < 1e-20). If “functionally 
related” is defined as “co-existence within the same 
genetic pathway” then 77.8 % of the 423 genes 
are functionally related. These results indicate that 
these functionally-linked genes are relationships that 
constitute true discoveries rather than noise (false 
positives).

An SNEA, implemented via Pathway Studio 
using master casual networks generated from 
more than 6.5 million relationships derived from 
more than 4 million full text articles and 25 million 
PubMed abstracts, was performed. Pathway Studio 
automated NLP technology is able to quickly 
update terminologies and linguistic rules used by 
NLP systems to ensure that any new term can be 
captured soon after it enters regular use in the 
literature. Updating is done weekly. This extensive 
database of interaction data provides high levels of 
confidence when interpreting experimentally-derived 
genetic data against the background of previously 
published results (Pathway Studio Web Help). The 
SNEA results demonstrated that many of the 423 
genes (>90 %) identified as causal genes for other 
health disorders such as breast, stomach, lung, and 
other cancers strongly associate with RC [23-25].

This studyhas several limitations which should 
to be taken into account in any future work. The 
literature data of the 1,100 articles studied were 
extracted from the Pathway Studio database. 
Although it covers over 40 million articles, the 
possibility remains that some articles studying 
gene-RC associations were beyond the scope of 
coverage. Additionally, even though the metrics 
scores, RScore, AScore, EScore, and PScore 
proposed as significance measures of the literature 

reported gene-disease relations are related, they 
are not direct biological significance measures of the 
genes for the disease. Experimental work is needed 
to test the networks and these metrics.

5 CONCLUSION
Results from this up-to-date LDM reveal that the 
423 genes identified showed multiple types of 
associations with RC, and mapped an overview for 
the current genetic study of RC. The literature and 
enrichment metrics discovered the top genes with 
specific significance. NCA, and enrichment analysis, 
results suggested that these genes play significant 
roles as a network in RC pathogenesis as well as the 
pathogenesis of many other RC-related disorders. 
These results suggest that these genes may operate 
as a functional genetic network which influences 
disease development.

We conclude that RC is a complex disease 
with complex genetic causes linked to a network 
composed of a large group of genes. LDM, together 
with GSEA, SNEA, and NCA, can serve as an 
effective approach in finding these potential target 
genes. This study provides a map with metrics for 
the current field of genetic research into RC, and can 
be used as the basis for further biological/genetic 
studies in the area.
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