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ABSTRACT
Background: The cause of leukemia, the most common type of 
cancer, remains unknown. Genetic studies have reported more than a 
thousand of genes as being linked to the disease.

Methods: A total of 1,093 leukemia candidate genes, identified from 
leukemia-gene relations data extracted from the ResNet 11 Mammalian 
database and supported by 6,524 references were evaluated. Four 
network metrics were used to evaluate individual gene potential 
relevance to leukemia. Gene-set enrichment, sub-network enrichment, 
and network-connectivity analyses were conducted on gene attributes. 
An expression dataset of 71 leukemia patients, and 76 healthy controls, 
was employed for validation.

Results: A total of 952 out of 1,093 genes were enriched in 100 
pathways (p < 3.3e-20), demonstrating strong gene-gene interaction. 
A network metrics analysis revealed 5 genes (TP53, CTNNB1, AKT1, 
TNF, and RARA), as measured by both functional diversity and 
replication frequency, as the top leukemia candidates. Validation, 
using expression data, showed that the 1,093 genes, as a whole, and 
the top genes, as identified by the proposed metrics, were efficient in 
distinguishing leukemia patients from controls (maximum classification 
ratio = 95.3 % with permutation p-value = 0.0054).

Conclusion: The genetic causes of leukemia are linked to a genetic 
network composed of a large number of genes. This network, together 
with the network metrics provided in this study, could provide a basis 
for further molecular studies in the field.
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analysis; Sub-network enrichment analysis; Network 
connectivity analysis; LOO cross validation

1 INTRODUCTION
Leukemia is a group of cancers, usually originating 
in bone marrow, which result in great numbers of 
abnormal white blood cells. It is the most common 
type of childhood cancer, even though approximately 
90 % of all leukemia cases are in adults [1]. The 
precise causes of leukemia remain unknown. 
Inherited and environmental factors are both thought 
to be involved [2].

More than a thousand genes related to 
leukemia, many of which suggested as potential 
biomarkers for the disease, such as FLT3, WT1, 
TET2, and KRAS, have been reported [3-5]. Several 
genes, such as IL2 and CSF3, have been studied 
in clinical trials [6, 7]. Many articles have reported 
genetic changes, and gene quantitative changes, in 
leukemia [8, 9]. Both increased, and decreased, gene 
expression levels/activities have been observed [10-

12]. Many genes have been reported to influence 
leukemia pathogenic development via unknown 
mechanisms [13].

We found no study reporting a systematic 
evaluation of the quality, and strength, of these 
reported genes as a functional network/group in the 
underlying biological process of leukemia. This study, 
instead of focusing on specific genes, attempts to 
provide a comprehensive view of the genetic-map, 
and use gene set enrichment analysis (GSEA) 
and sub-network enrichment analysis (SNEA) to 
study the underlying functional profiles of the genes 
identified [14]. The hypothesis is that leukemia genes 
are functionally linked to each other and co-regulate 
leukemia’s pathogenic development via multiple 
pathways.

2 MATERIALS AND METHODS
The study workflow was as follows: 1) acquisition of 
a leukemia-gene relation dataset and identification 
of leukemia candidate genes; 2) enrichment analysis 
of the identified genes to study their pathogenic 
significance to leukemia; 3) network metrics analysis 
to identify genes having specific significance; 4) 
network connectivity analysis (NCA) to test functional 
associations between the reported genes; and, 5) 
validation using an independent gene expression 
data set.

2.1 Leukemia-Gene relation Data 
Acquisition
Leukemia-gene relation data were extracted from 
the Pathway Studio ResNet® Mammalian database 
updated as of May 2016. The genes identified were 
used as the candidate network nodes/genes.

The ResNet® Mammalian database was a 
part of the Pathway Studio ResNet Databases. 
This is a group of real-time updated network 
databases and includes: curated signaling; cellular 
process and metabolic pathways; ontologies and 
annotations; and, molecular interactions and 
functional relationships extracted from the 35M+ 
references covering the entire PubMed abstract and 
Elsevier full text journals. It is updated weekly. The 
ResNet® Mammalian database contains information 
for more than 6,500,000 functional relationships for 
humans, rats, and mice and is linked to all of the 
original literature sources. The database includes: 
1) 142,270 proteins; 2) 106,732 small molecules; 3) 
8,863 cell processes; 4) 15,911 diseases; 5) 5,038 
functional classes; 6) 4,387 Clinical parameters; 
7) 1,983 pathways; 8) 559 complexes; and, 9) 767 
cells. (ResNet databases, http: //pathwaystudio. 
gousinfo.com/ResNetDatabase.html) .

2.2 Literature metrics analysis
There were 2 scores proposed for each gene-
disease relationship as a literature metrics analysis.

The reference number underlying a gene-disease 
relationship as the gene reference score (RScore) is 
defined by Eq.(1).

 RScore = The number of references underlying a relationship   (1) 

The earliest publication age of a gene-disease 
relationship is the gene age score (AScore) and is 
defined by Eq.(2)

    AScore = max 1≤ i ≤n ArticlePubAgei                      (2) 

                                

where n is the total number of references supporting 
a gene-disease relation, and 

    ArticlePubAge = Current date-Publication date +1        (3)

2.3 Enrichment metric analysis
Given a disease associated with a set of genetic 
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pathways ℛ the gene-wise enrichment score 
(EScore) for the kth gene, within a gene set of size n, 
is defined in Eq. (4) as
 

  EScorek = ∑i-1 (-log10 pValuei) / max1<i<n (-log10 pValuei)   (4)

where pValuei is the enrichment score of the ith 
pathway with the gene set; m ∈ ℛ is the number of 
pathways including kth the gene. The PScore for the 
gene, m, is defined as 

 PScorek = The number of pathways that form ℛ including the kth gene  (5) 

The PScore presents how many disease-related 
pathways were associated with the genes. The 
EScore shows involved pathway significance.

2.4 Enrichment analysis
GSEA and SNEA [15] were performed on: 1) entire 
gene list (1,093 genes); and 2) 2-subgroups with 
the highest metric scores to better understand any 
underlying functional profiles and gene pathogenic 
significance. An NCA was conducted on the two 
2-subgroups.

2.5 Validation using gene expression 
data
The hypothesis is that significant leukemia candidate 
gene-gene sets should be a factor in distinguishing 
leukemia patients from healthy controls. A Euclidean 
distance-based multivariate classification [16] on 
an expression dataset, followed by a leave-one-
out (LOO) cross validation, using the overall gene 
set and the sub-sets selected by different scores 
as tentative markers was performed to evaluate 
the effectiveness of the selected genes and the 
proposed metrics

A permutation of 5,000 runs was then conducted 
to test the hypothesis that a randomly selected gene 
set of the same size could lead to equal, or better, 
classification accuracy.

Expression data from 147 subjects, including 
samples from 71 chronic, lymphocytic leukemia (CLL) 
tumors, and 76 sorted CD19pos B cells from healthy 
donors (NCBI GEO: GSE50006), with 1,031 genes 
overlapped with the candidate leukemia gene-pool 
identified within the leukemia-gene dataset.

3 RESULTS

3.1 Identification of candidate genes
There were 1,093 leukemia candidate genes 
identified from the leukemia-gene relation data set. 
They are supported by 6,524 articles (Supplementary 
Material 1).There were 994 (90.94 %) which 
presented a regulation relationship to the disease; 
133 (12.17 %) a genetic change; 61 (5.58 %) a 
quantitative change; 52 (4.76 %) cell expression; 20 
(1.83 %) with Biomarker, 17 (1.56 %) with clinical 
trial, and 5 (0.46 %) with state changes. There are 
148 (13.54 %) genes that have been reported to 
have multiple relationships with the disease. There 
were 945 (86.46 %) genes that presented a 1-type 
relationship to the disease, 113 (10.34 %) with a 2, 
31 (2.84 %) with a 3, 3 (0.27 %) with a 4, and 1 (0.09 
%) with a  5. For a detailed definition and description 
of these relation types mentioned above, refer to 
the ‘Relations: Definitions and Annotations’ section 
at http://pathwaystudio. Gousinfo. com/ ResNet 
Database. html. Genes with ‘m*’ and ‘r*’ are genes 
identified in mice and rats, respectively.

Fig. 1 Gene Relation Type Distribution of the 1,093 
Genes

The publication date distribution for these 
6,531 articles appears in Fig. 2 (a). Novel genes 
are reported in each year. These have an average 
publication age of 6.0 years indicating that most were 
published recently. Publication date distributions for 
most of the articles underlying the 1,093 genes were 
similar (Fig. 2 (b)).

m
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3.2 Marker ranking
Of these 1,093 genes, 31 were reported in the period 
January through April within this year 2016 (Table 1). 

Table 1 also lists the top 31 genes with the highest 
RScores (in descending order). Full results appear in 
Supplementary Material 1.

3.3 Enrichment analysis
This section presents GSEA and SNEA results for 
3 different groups: the 1,093 genes, and both gene 
groups listed in Table 1.

3.3.1 Enrichment analysis of the 1,093 genes
Table 2 presents the top 20 pathways/groups 
enriched with 857/1,093 genes (p-values < 3.7e-
41). A complete list of the 100 pathways/gene sets 

enriched with 952/1,093 genes (p-value < 3.3e-20) 
appears in Supplementary Material 2.

Among the 100 pathway/groups enriched, 6 
related to cell apoptosis (345/1,093 genes), 9 to 
cell growth and proliferation (366/1,093 genes), 
6 to protein phosphorylation (201/1,093 genes), 
3 to the immune system (319/1,093 genes), 11 
to transcription factors (449/1,093 genes), 8 to 
protein kinase (234/1,093 genes), and 2 to neuronal 
systems (257/1,093 genes).

Fig. 2 Histogram of publications reporting gene-disease relationships between leukemia and the 1,093 
Genes. (a) Number of articles published by year; (b) Gene-wise publication date distribution of the supporting 
references, with mean marked as red star. 

Table 1. Top 31 Genes with Reported Associations to Leukemia Ranked by Different Scores

Genes with  
Ascore=1 

SPN; HHEX; RING1; ESAM; ATMIN; KDM4C; RNF2; ABCC4; BMP15; CDKN 1C; 
CDKN2C; DVL1; DVL3; DYNLL1; HDAC3; IDDM2; ITK; LDB1; P2RX2; P 2RY14; 
PCBP2; PFKFB3; PRDX2; PRD X4; RHOXF2; SHCBP1; SMARCA2; TES; TJP1; 
TNFSF11; TRPV2

Genes by 
Rscore

KMT2A; NOTCH1; NPM1; PTPN11; PTEN; HOXA9; BCL2; WT1; MEIS1; CSF2 ; 
DNMT3A; IDH1; IDH2; FLT3; TP53; M YC; ABL1; CTNNB1; CSF3; SPI1; IL2; A KT1; 
TAL1; TNF; VEGFA; RARA; RUNX1; MECOM; TET2; KIT; ASXL1
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Table 2. Molecular Function Pathways/Groups Enriched by 1,093 Genes Reported

Pathway/gene set name Hit type GO ID #of 
Entities Overlap p-value Jaccard 

similarity

Positive regulation of 
transcription from RNA 
polymerase II promoter

Biological process 0010552 1041 228 1.22E-91 0.12

Positive regulation of cell 
proliferation Biological process 0008284 568 163 4.35E-83 0.11

Negative regulation of 
apoptotic process Biological process 0006916 650 170 7.97E-80 0.11

Response to drug Biological process 0017035 509 138 1.57E-66 0.09

Positive regulation of 
transcription, DNA-
templated

Biological process 0045941 623 149 5.84E-64 0.1

Cytosol Cellular component 0005829 3173 353 2.36E-63 0.09

Nucleoplasm Cellular component 0005654 2669 317 2.16E-62 0.09

Innate immune response Biological process 0002226 792 159 4.50E-57 0.09

Negative regulation of 
Transcription from RNA 
polymerase II promoter

Biological process 0000122 799 154 9.07E-53 0.09

Neurotrophin TRK 
receptor signaling 
pathway

Biological process 0048011 280 91 3.66E-51 0.07

Transcription, DNA-
templated Biological process 0061018 3130 280 1.56E-48 0.09

Apoptotic process Biological process 0008632 790 145 6.95E-47 0.08

Response to organic 
cyclic compound Biological process 0014070 253 82 4.87E-46 0.07

Regulation of 
transcription, DNA-
templated

Biological process 0061019 2670 291 1.02E-45 0.08

Blood coagulation Biological process 0007596 501 112 9.89E-45 0.08

Positive regulation of 
apoptotic process Biological process 0043065 393 98 1.41E-43 0.07

Fc-epsilon receptor 
signaling pathway Biological process 0038095 186 68 3.48E-42 0.06

Response to 
lipopolysaccharide Biological process 0033196 252 78 3.60E-42 0.06

Negative cell proliferation 
regulation Biological process 0008285 471 105 8.20E-42 0.07

Transcription factor  
binding Molecular function 0008134 326 89 3.66E-41 0.07

Note: A Jaccard similarity is a statistic used to compare the similarity and diversity of two sample sets, which is defined 
by , where A and B are two sample sets.
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3.3.2 Enrichment analysis on top 31 genes 
with highest scores
The GSEA and SNEA results of the top 31 genes 
listed in Table 1 were compared. The top 10 
pathways/sub-networks for the AScore group and the 
RScore group are presented (Table 4 and Table 5). 
Complete results appear in Supplementary Material 
2 and 3.

Using a p-value threshold (p < 1E-4), the 31 genes 
with top AScores were enriched within 10 pathways/
groups. The RScore group score was 153. 

The top 10 pathways enriched with the 31 genes 
from the AScore and RScore groups appear in Table 
4. A complete listing of these pathways/gene sets 
appears in Supplementary Material 2.

The top 10 disease-related sub-networks enriched with a p-value < 5E-254 appear in Table 3. Complete 
results appear in Supplementary Material 3.

Table 3. Sub-networks Enriched by the 1,093 Genes 

Gene Set Seed Total # of Neighbors Overlap p-value Jaccard 
Similarity

Breast Cancer 3114 641 <1E-324 0.18

Leukemia, Myeloid, Acute 1008 498 <1E-324 0.32

Lymphoma 952 408 <1E-324 0.25

Carcinogenesis 1686 482 3.2E-287 0.21

Precursor Cell Lymphoblastic 
Leukemia-Lymphoma 577 309 1.9E-273 0.23

Lung Cancer 1708 465 1.2E-264 0.2

Carcinoma, Hepatocellular 2395 534 4.3E-264 0.18

Carcinoma, Non-Small-Cell Lung 1517 441 4.1E-262 0.21

Colorectal Cancer 2261    517 2E-259 0.18

Prostate Cancer 1937   480 4.1E-254 0.19

Many of these reported leukemia-related genes are associated with other cancers that were linked to Leukemia, with a 
large overlap (Jaccard similarity > 0.18).
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Table 4. Pathways/Groups Enriched by 31 Genes with the Highest AScore and RScore

Pathway/gene set Name GO ID p-value

The first 10 
pathways/gene  
sets enriched by 
top 31 genes with 
highest AScore

Dvl Pathway Studio Ontology 7.62E-07

AhpC/TSA family Pathway Studio Ontology 1.52E-06

Negative regulation of 
phosphorylation 0042326 5.23E-06

Peroxiredoxin Pathway Studio Ontology 7.10E-06

Chromatin binding 0003682 8.48E-06

Enzyme binding 0019899 1.63E-05

Thioredoxin peroxidase activity 0008379 2.22E-05

Peroxiredoxin activity 0051920 4.65E-05

Sex chromatin 0001739 4.73E-05

Positive regulation of protein 
Phosphorylation 0001934 9.23E-05

The first 10 
pathways/gene  
sets enriched by 
top 31 genes with 
highest RScore

Positive regulation of transcription 
from RNA Polymerase II promoter 0010552 1.12E-17

Positive regulation of cell 
proliferation 0008284 1.68E-14

Negative regulation of cell 
proliferation 0008285 1.36E-12

Positive regulation of transcription, 
DNA-templated 0045941 3.55E-11

Regulation of cell proliferation 0042127 4.66E-11

Oncogenes Pathway Studio Ontology 4.71E-11

Lymphoid progenitor cell 
differentiation 0002320 1.36E-10

Hemopoiesis 0030097 1.53E-10

Enzyme binding 0019899 1.98E-10

Myeloid progenitor cell 
differentiation 0002318 2.71E-10
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Genes with the top AScores and those with the 
top RScores enriched different groups of pathways 
with different p-values (AScore group: 7.62E-07 
- 9.23E-05; RScore group: 1.12E-17 - 2.71E-10). 
This suggests that the newly-reported genes are 
both functionally distinct, and are less significant, 
compared to those most frequently reported.

It was observed that 4/10 pathways/gene sets 
enriched by the RScore group (Table 4) in Table 2 

also appear in the top 20 pathways/groups enriched 
with 857/1,093 genes. The AScore group had none.

Results from the SNEA analysis consist of an 
enrichment analysis against disease sub-networks. 
Table 5 presents the top 10 disease-related sub-
networks enriched by the top 31 genes from the 
AScore group and the RScore group, respectively. 
Complete results appear in Supplementary Material 
3.

Table 5. SNEA Results by 31 Genes with the Highest AScore and RScore

Gene Set Seed Overlap p-value Jaccard 
similarity

The first 10 
pathways/gene 
sets enriched      
by top 31

Carcinoma, Pancreatic Ductal 6 4.90E-05 0.01
Cystitis, Interstitial 3 5.19E-05 0.03

Primary tumor 7 8.84E-05 0.01

Lymphoma 7 9.96E-05 0.01

Breast Cancer 12 1.19E-04 0

Melanoma 8 1.43E-04 0.01

Carcinoma 8 1.95E-04 0.01

Extravasation 3 2.39E-04 0.02

Diabetes Mellitus 10 2.65E-04 0
Anemia 5 2.72E-04 0.01

The first 10 gene 
sets Enriched   
highest RScore

Leukemia, Myeloid 27 1.41E-52 0.12
Leukemia, Myelogenous, 
Chronic, BCR-ABL Positive 30 1.85E-52 0.07

Leukemogenesis 26 1.99E-50 0.13

Acute leukemia 27 1.13E-46 0.08

Myeloproliferative Disorders 24 2.05E-45 0.12

Neoplasm, Residual 22 6.24E-45 0.17

Myelodysplastic Syndromes 28 8.90E-45 0.06

Blast Crisis 22 8.44E-44 0.15

Leukemia, Myeloid, Acute 31 8.80E-44 0.03

Leukemia, Promyelocytic, Acute 23 9.32E-41 0.1

From Table 5, both groups enriched other cancer related sub-networks. Enrichment p-values of the RScore group 
were much more significant than those of the AScore group (NScore group: 4.90E-05 - 2.72E-04; RScore group: 1.41E-52 
- 9.32E-41), and have greater Jaccard similarities.
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Fig. 3 Connectivity Networks built by 31 Genes from Different Groups. (a) 31 genes from RScore group; (b) 
31 genes from AScore group. The networks were generated using Pathway Studio. Unrelated genes appear in 
green.

Fig. 4 Comparison of Different Metrics Ranking the 1,093 Genes. (a) Comparison of the average metrics 
values with gene set size of 36; (b)  A Venn diagram of the top 31 genes selected by different metrics.

3.4 Connectivity analysis
An NCA was performed on the top 31 genes with the 
highest RScores and AScores (from Table 1) being 
used to generate gene-gene interaction networks. 
Results showed that, for the RScore group, there 
were 441 connections among the 31 genes, which 
has significant literature support. In contrast, genes 
within the AScore group demonstrated only 15 

relations among 19/31 genes (Fig. 3 (b)) with 12 
genes showing no direct relations with other genes 
in the group (Fig. 3 (b); highlighted in green). This 
observation was consistent with the GSEA and 
SNEA, and suggests that genes with the lowest 
AScore were not as functionally close to each other 
as the RScore group.

3.5 EScore analysis
Using GSEA, two biological metrics, EScore and 

PScore were generated for each gene. The PScore 
value represents how many leukemia associated 
pathways involved the gene. The EScore shows 
pathway significance.

A correlation analysis using averaged metric 
values of all 1,093 genes at a group level was 
conducted to compare the EScore and PScore with 

the two literature metrics (Fig. 4 (a)). A group size of 
36 genes was used. The 1,093 genes were sorted 
by RScore, then averaged by each type of metrics 
values using a moving window of length 36. 

Results showed that the average scores 
strongly correlate, especially for the top ones. (Fig. 
4 (a) and Table 6). Group-wise PScore and EScore 
were extremely correlated (p = 0.99) .
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Table 6. Pearson Correlation Coefficients 
between Different Metrics

EScore PScore RScore AScore

RScore 1.00

EScore 0.99 1.00

PScore 0.72 0.74 1.00

AScore 0.61 0.63 0.50 1.00

In addition to the group-wise correlations 
analysis, a cross-analysis of the top 31 genes 
selected using different scores was performed and is 
presented in a Venn Diagram. (Fig.4 (b)) (Oliveros, 
2007-2015).

There was a significant overlap between the 
PScore group and the EScore group (28/31). These 
28 genes related to most pathways that were 
significantly enriched. Additionally, 5 genes were 
identified as being in overlapping EScore, PScore, 
and RScore groups, including TP53, CTNNB1, AKT1, 
TNF, and RARA (RScore: 58.80 ± 11.17 references, 
PScore: 34.00 ± 2.55 pathways) (Fig. 4 (b)). There 
were 23 genes observed in both the PScore group 
and the EScore group, but not in the RScore group. 
This included: RELA, JUN, EGFR, SRC, J AK2, 
HIF1A, TGFB1, HDAC1, STAT3, IL1B, PTK2, FYN, 
LCK, LYN, MAPK3, IL6, MAPK1, EP300, CREB1, 

ERBB2, PDGFRB, GSK3B, and KDR. These genes 
played roles within multiple significant pathways 
with leukemia (32.04.28 pathways). Although they 
were older (AScore: 12.486.71 years) and were 
not frequently replicated (RScore: 10.04 ± 8.94 
references), the results suggest that they are worthy 
of further study.

3.6 Validation using expression data
Significant leukemia candidate gene-gene sets 
were hypothesized as contributing to being able to 
distinguish leukemia patients from healthy controls. 
If the selected gene set (1,093 genes) and the 
top genes selected by the proposed metric scores 
are significant to leukemia pathogenesis, then 
they should lead to significant higher classification 
accuracies when compared to randomly selected 
gene sets.  To test  th is  hypothesis that  the 
1,093-gene-pool and the 4 proposed metrics 
are effective, classification and leave-one-out 
(LOO) cross validation was conducted on a gene 
expression dataset (NCBI GEO: GSE50006). This 
was followed by a 5,000-run permutation test.

The 1,093 genes were ranked by different 
metric scores. The top ( = 1, 2, …) genes were then 
used as input variables for classification and LOO 
cross validation. LOO results using different number 
of genes, with the maximum classification ratios 
(maxCRs) marked at the position of corresponding 
number of genes appear in Fig. 5 (See Table 7).

Fig. 5 Comparison of LOO Cross Validations Metrics.
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The top genes selected by different scores 
can lead to the highest classification accuracies, 
adding more variable/genes with lower score may 
not necessarily help, which demonstrates the 
effectiveness of the proposed metrics (Fig. 5). All 
four groups (RScore, AScore, PScore, and EScore), 
obtained the highest scores of 94.6 %, 95.3 %, 92.1 
% and 92.1 %, respectively, with a relatively small 
number of genes. All the permutation p-values of 

these groups passed the 0.05 threshold. The top 33 
genes, by AScore, led to the highest CR (95.3 %), 
with a permutation p-value of 0.0054. Employing all 
matched 1,031/1,093 genes, resulted in 92.1 % CR 
which was reached with a permutation p-value of 
0.037. This suggests that the majority of the 1,093 
genes were effective for leukemia prediction. The 
results of LOO cross-validation and permutation 
approaches for different gene sets appear in Table 7.

Table 7. Permutation Test for Top Genes Corresponding to the Highest CRs

RScore AScore PScore EScore 1,031 Genes

MaxCRs 94.62 95.30 92.11 92.11 92.11

#Genes 520 33 392 430 1031

pvalue 0.0084 0.0054 0.044 0.035 0.037

4 DISCUSSION
This study proposed 4 network metrics to evaluate 
the 1,093 candidate genes within a genetic network 
for leukemia. It employed an independent gene 
expression data set to validate their efficiencies. 
GSEA, SNEA, and NCA were also used to study the 
pathogenic significance of these candidate genes in 
the disease.

The 1,093 genes identified were not equal in 
terms of publication frequency (RScore), novelties 
(AScore) , or the functional diversity (EScore). 
Using the proposed quality metrics scores, the 
genes may be ranked according to different needs/
significance and the top ones selected for further 
analysis (see Supplementary Material 1). Some 
frequently replicated genes (with a high RScore) 
also demonstrate high EScore and PScore, such as 
TP53, CTNNB1, AKT1, TNF, and RARA (see Fig. 4 
(b)). These genes have an average support of 58.80 
± 11.17 references, and were connected to multiple, 
significantly-enriched, pathways (34.00 ± 2.55). The 
results suggest that these genes are biologically 
significant in the disease.

There were 23 genes observed in both the 
PScore group and the EScore group (Fig. 4 (b)) 
which were not in the RScore group. Although they 
were older (AScore: 12.48 ± 6.71 years) and were 
not frequently replicated (10.04 ± 8.94 references), 
the results suggest that they merit further study. 

One example, the gene RELA, regulation of NF-
kappa B transcription factor activity (0051092); aging 
(GO: 0016280); liver development (GO: 0001889); 
negative regulation of apoptotic process (GO: 
0006916); positive regulation of cell proliferation 
(GO: 0008284); transcription factor complex (GO: 
0005667); innate immune response (GO: 0002226); 
and, protein kinase binding (GO: 0019901) [17-26]. This 
suggests that these genes may play significant roles 
in leukemia pathology and, thus, merit additional 
study.

The results demonstrate that most genes 
identified in this study were included in previously-
implicated leukemia pathways. This included 6 cell 
apoptosis pathways, 9 cell growth and proliferation 
pathways, 11 transcription factor pathways, 7 protein 
phosphorylation related pathways, 3 immune system 
pathways, 8 protein kinase related pathways, and 
2 neuronal system pathways [21-27]. We hypothesize 
that the majority of these literature-reported genes, 
especially those identified from significantly enriched 
pathways, should be functionally linked to leukemia. 
Although there may be false positives from the 
separate studies in the publications, it is less likely 
that a numerous group of genes were falsely 
perturbed [14].

When members of a gene set exhibit strong 
cross-correlation, GSEA boosts the signal-to-noise 
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ratio making it possible to detect modest changes 
in individual genes [14]. The NCA analysis showed 
that many of the frequently reported genes related 
to leukemia are functionally associated with one 
another (Fig. 3). This is supported by hundreds of 
scientific reports. It should be noted that 952/1,093 
were included in the top 100 pathways enriched 
(p-value < 3.3e-020), and that 857/1,093 in the top 
20 pathways appear in Table 2 (p-value < 3.7e-041) .

If “functionally related” is defined as co-
existence within the same genetic pathway, then 
87.1 % of the 1,093 genes are functionally related. 
The results indicate that these functionally-linked 
genes are more likely to be true discoveries than 
noise (false positives). It is less likely that these 
functionally-related genes were falsely identified than 
a single gene.

A Sub-Network Enrichment Analysis (SNEA) 
was performed which provided high confidence 
levels when interpreting experimentally-derived 
genetic data against a background of previously-
published results (Pathway Studio Web Help). SNEA 
results revealed that many of the 1,093 genes ( > 
90 %) have also been identified as causal genes 
for other health disorders such as, breast cancer, 
hepatocellular carcinoma, and lung cancer, all of 
which have strong associations with leukemia [28-30].

A LOO cross-val idation and permutation 
process using a gene expression data set (NCBI 
GEO: GSE50006) identified several significant 
gene combinations by using different scores, which 
generated the highest CRs. Permutation results 
showed that the top genes as determined by these 
four scores, as well as the 1,031/1,093 genes, were 
effective in predicting leukemia (p-value < 0.05). 
This indicates the effectiveness of the proposed 
metric scores. The top 33 genes selected by AScore 
reached the highest CR, 95.3 %, with a permutation 
p-value of 0.0054. This suggests that the genes 
identified in the earliest stage of leukemia genetic 
studies play a significant role in leukemia prediction.

This study has several limitations that should 
be considered in future work. The 1,093 genes were 
identified from leukemia-gene relation data extracted 
from the Pathway Studio ResNet database. Although 
supported by 6,524 articles, it is possible that some 
leukemia-gene relationships may have not been 
identified. The 4 proposed metrics were effective 
in selecting the top genes for leukemia prediction. 
Further network analysis with more experimental 
data may extract additional useful features for 
identifying biologically significant genes.

5 CONCLUSION
Leukemia is a complex, genetically-caused, disease 
with the genetic causes linked to a large gene 
network. Integrating network gene-disease relation 
data and experimental data, with GSEA, SNEA, 
and NCA, may provide and effective approach 
to identifying potential target genes. This study 
provides an overview map for the current field of 
genetic research of leukemia, which could be used 
as the basis in future biological/genetic studies.
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