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ABSTRACT
Marine organisms are important food resource for human. Diversified 
neurotoxins have been found in marine organisms. In order to effect 
effectively in ocean, marine neurotoxins are often multiplied potent 
than other toxins. Therefore the safety of marine products is critical 
for human health. Here we summarize the current potent marine 
neurotoxins and their derivatives based on their latest application in 
neuron science research. Their toxicity mechanism is also discussed. 
Most of the toxins specifically act on ion channels including Na+, K+, 
Ca2+ channels, a few interact with receptors like glutamate receptor 
or nicotinic acetylcholine receptors thus can have effect on neurons. 
They are frequently used as agonist or antagonist either blockade the 
channel or excite the potential. Overall, it is worthwhile to make use of 
this double-edged sword pharmacologically and scientifically.

Keywords: marine toxin, neurotoxicity, voltage-gated ion channels, 
sea food safety

1 INTRODUCTION
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Marine animals have unique way to defense 
because of their soft body, relatively immobile 
and lack of obvious physical strength. Living in an 
enormous and diverse space provided by the ocean, 
they may accumulate and use a variety of toxins for 
their protective purposes. The toxins vary from small 
molecules to peptides, and display unique chemical 
and biological features of scientific interest. Due to 
environmental change and pollutions, possibly for 
the purpose of surviving, there are more neurotoxins 
released by marine organisms [1]. The released 
neurotoxins are harmful for human and animals that 
eat them. There are reports that seafood has been 
recalled due to toxins that cause brain damage. Thus 
it is important to detect the presence of neurotoxins 
in marine food industry [2]. On the contrary, the potent 
neurotoxicity can serve as useful research tools, 
the substance’s unique structure can also serve as 
molecular models for the design of new drugs and 
pesticides [3]. This paper summarizes some of the 
new advances in known neurotoxins and specifically 
their application in neuron science research.

Marine neurotoxins cause neurotoxicity mainly 
by interacting with voltage-gated Na+, K+ and Ca2+ 

channels and modulating the flux of these ions 
into cells, resulting in adversely affected functions 

in both developing and mature nervous tissue [4, 

5]. Because marine neurotoxins specifically target 
neural components, it is important to use them in 
the research of animal model for brain disorders 
[6]. Pseudomonas aeruginin as representation of 
polyetropoid toxins produced by dinoflagellates, 
is a voltage-dependent Na+ channel agonist 
that increases the permeability of Na+ to the cell 
membrane, resulting in strong depolarization, 
causing neuromuscular excitability change. While 
the others are produced by marine bacteria and 
actinomycetes toxin, like tetrodotoxin is Na+ channel 
blockers, binding to the outside of Na+ channel, 
thus blocking the passage of Na+. Some bacteria 
and algae produced by the stone nectar is also Na+ 
channel blockers, causing neuromuscular signal 
transmission failure, leading to paralytic poisoning. 
In addition, some of the peptides produced by blue 
bacteria can also make Na+ channel inactivation, 
which cause strong neurotoxin. K+ channel inhibitors 
are also an important group of natural products found 
in marine neurotoxins. There are other neurotoxins 
acting on the Ca2+ channel, with both effects of block 
and excitement. Moreover, some compounds or 
peptides can bind receptors like glutamate receptor 
or Nicotinic acetylcholine receptors thus can have 
effect on neurons. 

Table 1. Summary of the marine neurotoxins

Neurotoxin Molecular target Organisms Application

Tetrodotoxin 
(TTX)

Na+ channel Puffer fish
1. Selectively inhibit Na+

2. Analgesic

Ciguatoxin 
(CTX)

Na+ channel Gambierdiscus 
toxicus

1. Agonist of voltage-dependent Na+ channels

Azaspiracid-1 
(AZA-1)

Na+ channel Algae 1. Inhibit the activity of Na+ channels with glutaric acid

2. hERG channel blocker

Sea anemone 
toxin

Na+ channel, K+ 
channel

Sea anemones 1. ATX-2, Calitoxin and anthopleurin selectively act on 
the Na+ channels

2. BDS-I/II specifically inhibit Kv3-family K+ channels

3. Kaliseptine and kalicludines selectively blockade K+ 
channels
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2 CLASSIFICATION OF MARINE 
NEUROTOXINS 
According to marine neurotoxins’ various toxicity 
mechanism, we grouped them in this review we 
group them based on the channels/receptors they 
interact with. However, some toxins have multiple 
targets, we addressed them in each category. They 
are summarized in table 1.

2.1 Marine neurotoxins interacting with 
Na+ channel
The voltage-gated Na+ channel is crucial for normal 
neuronal functioning [7]. The components of the 
channel are integral membrane proteins scattered 
along the axon of a neuron and each one has four 

domains. When a voltage changes or ligand binds 
in the right way, opening of the voltage-gated Na+ 

channel occurs. It is very important that these Na+ 
channels are functioning properly, as they are 
essential for the propagation of the action potential. 
Without this ability, the nerve cell can not transmit 
signals and the part of the body that it innervates is 
disconnected from the nervous system. This may 
lead to paralysis of the affected part. Many marine 
neurotoxins can specifically or non-specifically act 
on Na+ channel.

Tetrodotoxin (TTX), a specific blocker of a 
voltage-sensitive Na+ channel, is isolated from 
puffer fish and has a high degree of Na+ passage 
for excitatory cell membranes such as nerves, 
muscles, and Pujinye's fibers Specificity [8, 9]. The 
marine flatworm Planocera multitentaculata is a 

Conotoxin 
(CTX)

Na+ channel, 
Ca2+ channel, 
AchR

Cone snails 1. μ-CTX, δ-CTX specifically suppresses voltage-
sensitive Na+ channels

2. ω-CTX selectively blockade Ca2+ channel 

3. α-CTX blockades neuronal chondrocyte acetylcholine 
receptors (AchR)

4. Analgesics

5. Pain relief

Saxitoxin 
(STX)

Na+ channel, K+ 
channel, Ca2+ 
channel

Dinoflagellates 1. Selective Na+ channel blocker

2. Act on K+ and Ca2+ channels

Palytoxin 
(PLTX)

Na+ channel, K+ 
channel

Palythoa, 
Ostreopsis

1. Act on the Na+-K+-ATPase

Domoic acid 
(DA)

Glutamate 
receptor

Algae 1. AMPA/kainate receptor agonist

β-N-
methylamino-
L-alanine 
(BMAA)

Glutamate 
receptors

Mollusks 1. Act glutamate receptors

Nereistoxin 
(NTX)

Nicotinic 
acetylcholine 
receptors

Annelid worm 1. Selectively blockade nicotinic receptors

2. Insecticide

Anabaseine Nicotinic 
acetylcholine 
receptors

Nemertines 1. Acetylcholine receptor agonist
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known TTX-bearing organism, and is suspected 
to be a TTX supplier to puffer fish [10]. TTX is an 
important tool for the identification, isolation, and 
study of Na+ channels because of its high selectivity 
and high affinity for blocking Na+ channels on the 
neurohormonal membrane [11-13]. However, it is more 
interestingly that TTX's mechanism of action differs 
from terrestrial found toxins. It selectively inhibits 
Na+ passage through the neural cell membrane at 
very low concentrations but allow K+ to pass through. 
This property is extremely useful for neurobiology 
and pharmacological studies. TTX is one of the 
most peculiar natural products of small molecules 
found in the nature today, and has great potential 
in drug development [14]. TTX was originally used to 
treat neuralgia in patients with leprosy as a strong 
analgesic with relatively slow and long lasting, but 
no addiction. It is thousands times more potent than 
usual anesthetic drugs with local anesthetic effect 
and has significant antiarrhythmic activity. TTX has 
seven natural derivatives, they selectively blockade 
function of the Na+ channel on cell membrane. 
However, due to their great toxicity, and lack of 
pharmacokinetic data, they have not been widely 
used. Thus derivatives that can have reduce toxicity 
but preserve the potential blocking effect would be of 
great significance. 

Ciguatoxin (CTX) is derived from the genus 
Gambierdiscus toxicus and all fish that eat this 
algae accumulate CTX [15]. CTX toxicity is 100 times 
stronger than TTX. CTX is a new agonist of voltage-
dependent Na+ channels that binds to the channel 
receptor site VI and increases the permeability of 
Na+ to excite the cell membrane, causing strong 
depolarization, resulting in changes in neuromuscular 
excitability, inducing a series of pharmacological 
and toxicological effects [16-18]. Three types of CTX, 
Pacific cigarettes, Caribbean ciguatoxin, and Indian 
ciguatoxin have been found [19].

Azaspiracid-1 (AZA-1) is an algal toxin that 
accumulates in edible mussels. It can induce 
diarrhetic shellfish poisoning (DSP)-like disease in 
humans or neurotoxicological symptoms and death 
in mice [20]. The toxin is able to inhibit neurological 
signaling in spinal cord neuronal networks, in young 
cerebellar granule cell cultures and in primary 
neocortical neurons. At high concentrations it acts 
as a human ether-a-go-go related gene (hERG) 
potassium channel blocker [21]. In the presence of 
glutaric acid, AZA-1 at nanomolar concentration 
could inhibit the activity of Na+ channels in vitro. 
AZA-1 exposure induces an early differentiation 
phenotype followed by a later cell death in PC12 
cells [22]. The differentiated appearance coincides 
with down-regulation of a specific peripherin isoform, 
a neuronal specific intermediate filament protein [22].

Sea anemone is a group of neurotoxins isolated 
from shoreline anemone Palvthora toxicus, P. 
vestitus, P. mamillosa, and P caribaeorum [23-25]. 
One sub family of sea anemone toxins acts on the 
Na+ channel while another subfamily acts on the K+ 
channel [25]. ATX-2 is one of the anemone toxin, which 
can selectively act on the Na+ channels of the cell 
membrane [26-28]. It is also an effective tool for studying 
myocardium and nerve membrane excitations. 
Calitoxin and anthopleurin also belong to the 
sodium channel toxin family [29]. These neurotoxins 
bind specifically to the sodium channel, thereby 
delaying its inactivation during signal transduction, 
resulting in strong stimulation of mammalian cardiac 
muscle contraction. Calitoxin 1 has been found in 
neuromuscular preparations of crustaceans, where 
it causes massive neurotransmitter release, causing 
firing of the axons [29]. 

Conotoxin (CTXs) are small peptides toxins 
consisting of 10 to 30 amino acid residues [30]. They 
are the smallest neurotransmitter neurotoxins found 
so far. They can be classified into α, ω, μ, δ and 
other subtypes, each subtype can still be subdivided. 
μ-CTX specifically suppresses voltage-sensitive 
Na+ channels in the activation phase [31]. While 
δ-CTX specifically suppresses voltage-sensitive Na+ 

channel in the non-activated phase, extending the 
duration of action potential [32]. Clinically CTX are 
used as specific diagnostic reagents. Additionally, 
CTXs also used as analgesics with a curative but 
non addictive effect. CTXs are interesting molecules 
with a diverse human therapeutic activities, such as 
anti-nociceptive, antiepileptic, cardio- and neuro-
protective.

Saxitoxin (STX) is a neurotoxin naturally produced 
by certain species of marine dinoflagellates and 
freshwater cyanobacteria [33]. STX is associated with 
paralytic shellfish poisoning (PSP), together with its 
derivatives they are often referred to as “PSP toxins” 

[34]. Among the derivatives GTX-III is the only one 
exhibits comparable toxicity to that of STX. It acts as 
a selective Na+ channel blocker, preventing normal 
cellular function and leading to paralysis [35]. STX and 
its derivatives are also known to act on K+ and Ca2+ 
channels [36].

Palytoxin (PLTX) is a potent non-protein marine 
compound produced by corals of the genus Palythoa 
and by dinoflagellates of the genus Ostreopsis 

[37]. Several PLTX analogues have been identified 
so far, either from Palythoa or from Ostreopsis [38]. 
PLTX acts on the Na+ - K+ - ATPase (sodium pump), 
thus allows passive transport of both Na+ and K+, 
resulting in an imbalance of the ion gradient that is 
essential for most cells. This feature enables PLTX 
be a powerful tool in neuron research.
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2.2 Marine neurotoxins interacting with 
K+ channels
Voltage-gated K+ channels are transmembrane 
channels specific for K+ and sensitive to voltage 
changes in many cells membrane potential [39]. They 
play a crucial role in repolarizing the membrane 
after the initiation of an action potential. They 
are also involved in physiological processes, 
such as neuronal excitability, muscle contraction, 
neurotransmitter release. The Kv3 K+ channels, with 
features of ultra-rapid gating and high activation 
threshold, are essential for high-frequency firing 
in many CNS neurons. More important, the Kv3.4 
subunit has been implicated in the major CNS 
disorders such as Parkinson's and Alzheimer's 
diseases. Therefore, it is implicated that selectively 
targeting this subunit might have a therapeutic 
utilization application. 

Sea anemone venom is an important source 
of bioactive compounds used as tools to study the 
pharmacology and structure-function of voltage-
gated K+ channel [40]. These neurotoxins can be 
divided into four different types, according to 
their structure and mode of action. Sea anemone 
neurotoxin family includes the antihypertensive 
and antiviral proteins BDS-I (P11494) and BDS-
I I  (P59084) expressed by Anemonia v i r id is 
(previously Anemonia sulcata). BDS-I is used as 
a specific inhibitor of Kv3-family K+ channels [41]. 
Both peptides are known to specifically blockade 
the Kv3.4 potassium channel, and markedly inhibits 
current through Kv3.1 and Kv3.2 channels, thus 
bring about a decrease in blood pressure and 
possible application in degenerative disorders 
[42]. Because of the effect on K+ channels, Sea 
anemones neurotoxins have been widely used as 
pharmacological tools. Furthermore, some of the 
toxins are now useful drugs for the diagnosis and 
treatment of autoimmune diseases [43]. Kaliseptine 
and kalicludines isolated from Anemonia viridis is 
in the K+ channel toxin family too [44]. Kaliseptine 
binds to the same receptor site as dendrotoxin and 
kalicludines, function as an efficient K+ channel 
inhibitor. 

2.3 Marine neurotoxins interacting with 
Ca2+ channels
Voltage-gated Ca2+ channels are heteromeric 
proteins composed of 5 subunits [45]. These channels 
mediate Ca2+ influx into the cell following membrane 
depolarization. Two distinct classes of Ca2+ channels 
are generally recognized: the high voltage-activated 
(HVA) and low voltage-activated (LVA) channels. 
Each class is characterized by the degree of 
depolarization required for channel activation, a 
biophysical property that is largely determined by 

the α1 subunit. Ca2+ channel is widely expressed 
throughout the body, particularly in excitable and 
secretory cells, Ca2+ is a ubiquitous signaling 
molecule critical to a wide range of physiologic 
processes in virtually all cell types, including neurons. 
Thus Ca2+ channels are targets for numerous ligands 
including marine naturally occurring peptide toxins. 
Some of these peptide toxins are invaluable tools for 
studying the structure and function of Ca2+ channels 
and have potential therapeutic applications [46].

Among the super family, ω-CTX specifically 
blockade neuronal enamel presynaptic voltage-
sensitive Ca2+ channel [47, 48]. They are found in the 
venom of piscivorous (fish hunters), vermivorous 
(worm hunters), and molluscivorous (mollusk 
hunters) cone snails. The most extensively analyzed 
ω-conotoxin to date is ω-MVIIA, which blockades 
CaV2.2 ion channels. This conotoxin has been 
approved by the FDA as a non-opioid analgesic 
peptide against long-term neuropathic pain in 
human, under the commercial name of Prialt [49]. 
ω-CTX solidified a role in pain management with 
the approval of ziconotide [50]. Ziconotide acts as a 
selective N-type voltage-gated Ca2+ channel blocker. 
This action inhibits the release of pro-nociceptive 
neurochemicals l ike g lutamate,  CGRP, and 
substance P in the brain and spinal cord, resulting 
in pain relief. With very similar structure to ω-CTX, 
RsXXIVA was isolated from the venom duct of 
Conus regularis and it showed inhibition on CaV2.2-
mediated calcium currents in rat superior cervical 
ganglion (SCG) neurons, plus an analgesic effect on 
mice [49].

2.4 Marine neurotoxins interacting with 
other receptors
Among the CTX family some toxins bind to the 
receptors in nerves and muscles, with high affinity 
and highly specific features. Thus they can be used 
as useful tools for neuroscience. Such as α-CTX 
can acts on and blockades neuronal chondrocyte 
acetylcholine receptors (AchR) [51]. 

Domoic acid (DA) is produced by a type of 
algae called Pseudo-nitzschia, which flourished 
in massive blooms due to above average water 
temperatures and high levels of nutrient runoff [52]. 
DA from algae induced sea lions death and is found 
in various commonly consumed commercial fish 
species [53]. Exposure to DA damages the spatial 
memory of sea lions. It is also the principal cause 
of amnesic shellfish poisoning (ASP) in human. DA 
behaves similarly to the neurotransmitter glutamic 
acid, binding to and eventually killing receptors in 
the hippocampus and causing short- and long-term 
memory loss in mammals, including humans [54]. Thus 
fast and effective method was developed to detect 
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DA based upon microchip electrophoresis combined 
with laser-induced fluorescence detection [55]. It has 
been widely used as AMPA/kainate receptor agonist 
in neurotoxicity studies in learning and memory 
disease models [6, 56, 57]. Recent study indicate that 
DA induces long-term changes in α2-adrenoceptor 
binding in rat brain that may have relevance to the 
progression of an epilepsy phenotype [58].

The neurotoxin β-N-methylamino-L-alanine 
(BMAA) and its isomers 2,4-diaminobutyric acid 
(DAB) and N-2 (aminoethyl) glycine (AEG) are 
found in marine mollusks, probably produced by 
cyanobacteria [59]. BMAA has been hypothesized 
to trigger the pathogenesis of neurodegenerative 
diseases l ike Amyotrophic Lateral Sclerosis 
(ALS) and Alzheimer’s disease (AD). Extensive 
in vitro experiments have demonstrated that the 
neurotoxicity of BMAA for neurons is a result of 
multiple mechanisms including action on glutamate 
receptors to induce oxidative stress in the neuron by 
depleting glutathione and generating a cytotoxic DNA 
damaging alkylating agent [60, 61]. Study with vervets 
showed that BMAA may trigger neurodegenerative 
disease such as Alzheimer’s Disease as a result of 
gene/environment interaction, thus it could became a 
useful tool for studying of neurodegenerative disease 
[62, 63]. Because it is predicated that BMAA toxicity 
is transferrable from mother to infant, thus extra 
caution is in need within the areas where BMAA and 
its derivatives exist [64, 65]. Method to detect BMAA 
level will facilitate prevention of BMAA toxicity [66].

Nereistoxin (NTX) was originated from a marine 
annelid worm Lumbriconereis heteropoda. There 
have been reports about its neuronal toxicity in 
human and animal by blocking nicotinic acetylcholine 
receptor, and by reversibly inhibiting radio ligand 
binding to Torpedo nicotinic receptors [67, 68]. It causes 
significant neuromuscular toxicity, that may result 
in respiratory failure. There is report that in chick 
retinas NTX blockaded retinal responses to the 
nicotinic agonist dimethylphenylpiperazinium [69]. 
NTX inhibition characterized of being selective for 
nicotinic receptors, long lasting, and not reversible 
upon washing. NTX or its metabolite is suggested 
to be a potent antagonist as well as a selective 
reducing agent for nicotinic receptors in chick retina. 
Its analogue pesticides including cartap, bensultap, 
thiocyclam, and thiobensultap have been commonly 
used in agriculture, because of their low toxicity and 
high insecticidal activity [70].

Anabaseine is an alkaloid toxin produced 
by Nemertines. Due to its similar structure with 
nicotine, it has been shown to act as an agonist 
on most nicotinic acetylcholine receptors in the 
central nervous system and peripheral nervous 
system [71].  Binding of the receptors causes 

the depolarization of neurons and induces the 
release of both dopamine and norepinephrine. 
Compare to existing antipsychotic drugs, α7-
Nicotinic acetylcholine receptors have became as 
a potential therapeutic target for the treatment of 
neurocognitive dysfunctions in schizophrenia [72]. 
However its derivatives, such as 3- (2,4 dimethoxy) 
- benzylidene。-anabaseine (DMXB-A, known as 
GTS-21), with cytoprotector properties and improved 
memory in experimental animal of cognitive and 
memory deficits diseases [73]. Substances of this 
series are developed as potential drugs for treating 
Alzheimer’s disease.

3 CONCLUSION
We summarized the mechanism of most popular 
marine neurotoxins by far and updated their 
pharmacology characters and applications in 
research. Research in marine neurotoxins is very 
important for people's health. Based on the current 
information about marine toxins, a platform should 
be established to detect the neurotoxicity of marine 
active substrates. It is important to monitor the safety 
of marine products. Studies investigating applications 
of marine toxins in neurodegenerative diseases, the 
development of biosensors is also of great interest. 
Marine neurotoxins can be used as experimental 
models, potential therapeutics, or neurobiological 
tools. As a conclusion, due to the unique features of 
marine neurotoxins and strong biological activities, 
they can play an important role in the brain science 
research and great potential for drug development. 
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