Supplementary Materials

Lanthanide-Radical Magnetic Coupling in [LnPc₂]⁰: Competing Exchange Mechanisms Captured via Ab Initio Multi-Reference Calculations

Haibei Huang, Willem Van den Heuvel, Alessandro Soncini *

School of Chemistry, University of Melbourne, Melbourne, Victoria 3010, Australia

* Correspondence: Alessandro Soncini, Email: asoncini@unimelb.edu.au.

GEOMETRY OF [LNPZ₂]⁰ MOLECULES

Table S1. Cartesian coordinates (Å) of the D_{4d} symmetry unique atoms in $[LnPz_2]^0$.

D _{4d} -[LnPz ₂] ⁰	Х	Y	Z
Ln	0.00000	0.00000	0.00000
Ν	1.96363	0.00000	1.39550
Ν	2.39530	2.39530	1.56000
С	2.77855	1.10129	1.53290
С	4.17999	0.70300	1.66060
Н	4.99972	1.32549	1.73529

CASSCF/RASSI-SO ENERGIES OF $[LNPZ_2]^0$

0 0 0

	[TbPz ₂] ^o	[DyPz ₂] ^o	[HoPz ₂] ^o	[ErPz ₂] ^o		
	0.00	0.00	0.00	0.00		
	0.00	0.00	0.00	0.98		
	6.09	3.88	3.33	0.98		
	6.09	3.88	3.33	2.20		
	325.82	86.40	24.99	62.09		
	325.82	86.40	24.99	62.09		
	330.53	91.27	26.95	62.48		
	330.53	91.27	26.95	62.48		
	554.47	110.01	48.31	161.59		
	554.47	110.01	48.31	161.59		
	558.03	113.27	50.94	162.38		
	558.03	113.27	50.94	162.38		
				•••		
g-factors of the two lowest doublets						
	0.00	0.00	0.00			
1	0.00	0.00	0.00	-		
	20.00	19.36	21.97			
	0.00	0.00	0.00			
2	0.00	0.00	0.00	-		
	16.00	15.35	17.97			

Table S2. CASSCF/RASSI-SO energy levels (cm^{-1}) of $[LnPz_2]^0$.

~